Join Sign in

Apply your skills in Google Cloud console

Dr. Cenk M. Yetis

Member since 2025

Gold League

28595 points
Build and Deploy Machine Learning Solutions on Vertex AI Earned Tem 7, 2025 EDT
Introduction to Security in the World of AI Earned Haz 15, 2025 EDT
Webhook fundamentals Earned Haz 6, 2025 EDT
Conversational AI on Vertex AI and Dialogflow CX Earned Haz 6, 2025 EDT
Create Generative AI Apps on Google Cloud Earned May 7, 2025 EDT
Geliştiriciler İçin Sorumlu Yapay Zeka: Gizlilik ve Güvenlik Earned May 2, 2025 EDT
Geliştiriciler için Sorumlu Yapay Zeka: Yorumlanabilirlik ve Şeffaflık Earned Nis 30, 2025 EDT
Geliştiriciler İçin Sorumlu Yapay Zeka: Adalet ve Önyargı Earned Nis 30, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation Earned Nis 28, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Nis 25, 2025 EDT
Üretken Yapay Zeka İçin Makine Öğrenimi Operasyonları (MLOps) Earned Nis 25, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned Nis 24, 2025 EDT
Production Machine Learning Systems Earned Nis 22, 2025 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Nis 19, 2025 EDT
Feature Engineering Earned Mar 27, 2025 EDT
Büyük Dil Modellerine Giriş Earned Mar 23, 2025 EDT
Üretken Yapay Zekaya Giriş Earned Mar 23, 2025 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned Şub 5, 2025 EST
Create ML Models with BigQuery ML Earned Şub 3, 2025 EST
Introduction to AI and Machine Learning on Google Cloud Earned Şub 1, 2025 EST
Working with Notebooks in Vertex AI Earned Şub 1, 2025 EST
Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama Earned Oca 26, 2025 EST
Professional Machine Learning Engineer Study Guide Earned Oca 18, 2025 EST

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI course, where you will learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models. This skill badge course is for professional Data Scientists and Machine Learning Engineers. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.

Learn more

In this course, you will learn the important role that different types of webhooks play in Dialogflow CX development, and how to effectively integrate them into your routine configuration of a Virtual Agent.

Learn more

In this course you will learn how to use the new generative AI features in Dialogflow CX to create virtual agents that can have more natural and engaging conversations with customers. Discover how to deploy generative fallback responses to gracefully handle errors and omissions in customer conversations, deploy generators to increase intent coverage, and structure, ingest, and manage data in a data store. And explore how to deploy and maintain generative AI agents using your data, and deploy and maintain hybrid agents in combination with existing intent-based design paradigms.

Learn more

Generative AI applications can create new user experiences that were nearly impossible before the invention of large language models (LLMs). As an application developer, how can you use generative AI to build engaging, powerful apps on Google Cloud? In this course, you'll learn about generative AI applications and how you can use prompt design and retrieval augmented generation (RAG) to build powerful applications using LLMs. You'll learn about a production-ready architecture that can be used for generative AI applications and you'll build an LLM and RAG-based chat application.

Learn more

Bu kursta, yapay zekada gizlilik ve güvenlik konuları ele alınmaktadır. Kurs boyunca, Google Cloud ürünleri ve açık kaynak araçları kullanarak yapay zekayla ilgili önerilen gizlilik ve güvenlik uygulamalarını benimsemenize yardımcı olacak pratik yöntemler ile araçları tanıyacaksınız.

Learn more

Bu kursta yapay zekanın yorumlanabilirliği ve şeffaflığı kavramlarıyla ilgili temel bilgiler sunulmaktadır. Ayrıca geliştiriciler ve mühendisler için yapay zeka sistemlerinde şeffaflığın önemi ele alınmaktadır. Kurs boyunca, veri ve yapay zeka modellerinde yorumlanabilirliğin ve şeffaflığın sağlanmasına yardımcı olacak pratik yöntemleri ve araçları tanıyacaksınız.

Learn more

Bu kursta, sorumlu yapay zeka kavramı ve yapay zeka ilkeleri tanıtılmaktadır. Kurs, adalet ve önyargıyı pratik şekilde tanımlama teknikleri ile yapay zeka/makine öğrenimi uygulamalarında önyargının azaltılması konularını ele almaktadır. Kurs boyunca, Google Cloud ürünleri ve açık kaynaklı araçları kullanarak sorumlu yapay zekayla ilgili en iyi uygulamaları benimsemenize yardımcı olacak pratik yöntemler ve araçları tanıyacaksınız.

Learn more

This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Learn more

Bu kurs, MLOps ekiplerinin üretken yapay zeka modellerini dağıtırken ve yönetirken karşılaştığı zorlukların üstesinden gelmek için gereken bilgi ve araçları sağlamaktadır. Ayrıca yapay zeka ekiplerinin, MLOps süreçlerini kolaylaştırıp üretken yapay zeka projelerinde başarıya ulaşması için Vertex AI'ın nasıl yardımcı olduğunu öğrenmenizi amaçlamaktadır.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Learn more

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Learn more

Bu giriş seviyesi mikro öğrenme kursunda büyük dil modelleri (BDM) nedir, hangi kullanım durumlarında kullanılabileceği ve büyük dil modelleri performansını artırmak için nasıl istem ayarlaması yapabileceğiniz keşfedilecektir. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google araçları hakkında bilgi verilecektir.

Learn more

Bu, üretken yapay zekanın ne olduğunu, nasıl kullanıldığını ve geleneksel makine öğrenme yöntemlerinden nasıl farklı olduğunu açıklamayı amaçlayan giriş seviyesi bir mikro öğrenme kursudur. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google Araçlarını da kapsar.

Learn more

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.

Learn more

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Learn more

This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.

Learn more

Giriş düzeyindeki Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: Dataprep by Trifacta ile veri temizleme, Dataflow'da veri ardışık düzenleri çalıştırma, Dataproc'ta küme oluşturma ve Apache Spark işleri çalıştırma ve makine öğrenimi API'lerini (Cloud Natural Language API, Google Cloud Speech-to-Text API ve Video Intelligence API dahil olmak üzere) çağırma. Beceri rozeti, Google Cloud ürün ve hizmetlerindeki uzmanlık düzeyiniz karşılığında Google Cloud tarafından verilen özel bir dijital rozettir. Bilgilerinizi, etkileşimli ve uygulamalı bir ortamda kullanma becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozeti kursunu ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.

Learn more

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Learn more