This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
Complete the intermediate Perform Predictive Data Analysis in BigQuery skill badge course to demonstrate skills in the following: creating datasets in BigQuery by importing CSV and JSON files; harnessing the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on soccer event data and evaluate the impressiveness of World Cup goals.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
Complete the introductory Derive Insights from BigQuery Data skill badge course to demonstrate skills in the following: Write SQL queries.Query public tables.Load sample data into BigQuery.Troubleshoot common syntax errors with the query validator in BigQuery.Create reports in Looker Studio by connecting to BigQuery data.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.
This is the second Quest in a two-part series on Google Cloud billing and cost management essentials. This Quest is most suitable for those in a Finance and/or IT related role responsible for optimizing their organization’s cloud infrastructure. Here you'll learn several ways to control and optimize your Google Cloud costs, including setting up budgets and alerts, managing quota limits, and taking advantage of committed use discounts. In the hands-on labs, you’ll practice using various tools to control and optimize your Google Cloud costs or to influence your technology teams to apply the cost optimization best practices.
Moving to the cloud creates numerous opportunities to start working in a new way and it empowers the workforce to better collaborate and innovate. But it’s also a big change. Sometimes the success of the change hinges not on the change itself, but on how it’s managed. This course will help people managers to understand some of the key challenges associated with cloud adoption, and provide them with a verified in-the-field framework that will assist them in supporting their teams on the change journey. By addressing the human factor of moving to the cloud, organizations increase their chances of realizing business objectives and investing in their future talent.
Want to build ML models in minutes instead of hours using just SQL? BigQuery ML democratizes machine learning by letting data analysts create, train, evaluate, and predict with machine learning models using existing SQL tools and skills. In this series of labs, you will experiment with different model types and learn what makes a good model.
In this course, we define what machine learning is and how it can benefit your business. You'll see a few demos of ML in action and learn key ML terms like instances, features, and labels. In the interactive labs, you will practice invoking the pretrained ML APIs available as well as build your own Machine Learning models using just SQL with BigQuery ML.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
The third course in this course series is Achieving Advanced Insights with BigQuery. Here we will build on your growing knowledge of SQL as we dive into advanced functions and how to break apart a complex query into manageable steps. We will cover the internal architecture of BigQuery (column-based sharded storage) and advanced SQL topics like nested and repeated fields through the use of Arrays and Structs. Lastly we will dive into optimizing your queries for performance and how you can secure your data through authorized views. After completing this course, enroll in the Applying Machine Learning to your Data with Google Cloud course.
In this course, we see what the common challenges faced by data analysts are and how to solve them with the big data tools on Google Cloud. You’ll pick up some SQL along the way and become very familiar with using BigQuery and Dataprep to analyze and transform your datasets. This is the first course of the From Data to Insights with Google Cloud series. After completing this course, enroll in the Creating New BigQuery Datasets and Visualizing Insights course.
This is the second course in the Data to Insights course series. Here we will cover how to ingest new external datasets into BigQuery and visualize them with Looker Studio. We will also cover intermediate SQL concepts like multi-table JOINs and UNIONs which will allow you to analyze data across multiple data sources. Note: Even if you have a background in SQL, there are BigQuery specifics (like handling query cache and table wildcards) that may be new to you. After completing this course, enroll in the Achieving Advanced Insights with BigQuery course.