Jarrod Tham
Date d'abonnement : 2021
Ligue de Diamant
100830 points
Date d'abonnement : 2021
Terminez le cours intermédiaire Développer des applications d'IA générative avec Gemini et Streamlit pour recevoir un badge démontrant vos compétences dans les domaines suivants : la génération de texte, l'application d'appels de fonction avec le SDK Python et l'API Gemini, et le déploiement d'une application Streamlit avec Cloud Run. Vous découvrirez différentes manières de demander à Gemini de générer du texte, d'utiliser Cloud Shell pour effectuer des tests et des itérations sur une application Streamlit, puis de l'empaqueter en tant que conteneur Docker déployé dans Cloud Run.
Terminez le cours intermédiaire Inspecter des documents enrichis avec Gemini multimodal et le RAG multimodal pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'utilisation de requêtes multimodales pour extraire des informations de données textuelles et visuelles, la génération d'une description vidéo et la récupération d'informations qui ne sont pas incluses dans une vidéo en utilisant la multimodalité avec Gemini ; la création de métadonnées de documents contenant du texte et des images, la collecte de tous les éléments de texte pertinents, et l'impression de citations à l'aide de la génération augmentée par récupération (RAG, Retrieval Augmented Generation) multimodale avec Gemini. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et …
Ce cours présente les concepts d'interprétabilité et de transparence de l'IA. Il explique en quoi la transparence de l'IA est importante pour les développeurs et les ingénieurs. Il explore des méthodes et des outils pratiques permettant d'atteindre l'interprétabilité et la transparence des modèles d'IA et des données.
Ce cours présente le concept d'IA responsable et les principes associés. Il met en avant des techniques permettant d'identifier des données équitables ou biaisées, et de limiter les biais lors de l'utilisation de l'IA/du ML. Vous découvrirez des méthodes pratiques et des outils pour mettre en place de bonnes pratiques d'IA responsable à l'aide des produits Google Cloud et des outils Open Source.
Avec ce cours, explorez les technologies de recherche, les outils et les applications optimisés par l'IA. Découvrez la recherche sémantique, qui utilise les embeddings vectoriels (ou "plongements vectoriels"), la recherche hybride, qui combine les approches sémantique et par mots-clés, et la génération augmentée par récupération (RAG), qui réduit les hallucinations générées par l'IA en agissant comme un agent ancré. Enfin, acquérez une expérience pratique de Vertex AI Vector Search afin de créer votre moteur de recherche intelligent.
Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.
Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.
Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.
Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.
Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.
Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets.
Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Race to the finish line with the Arcade June Speedrun and pick up valuable skills along with an exclusive Google Cloud Credential. Get hands-on experience with APIs, learn how to build a serverless app, and more! No prior experience needed.
Hey there! You're invited to game on with the Arcade Trivia for June Week 3! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the June Trivia Week 3 badge!
Hey there! You're invited to game on with the Arcade Trivia for June Week 4! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the June Trivia Week 4 badge!
Hey there! You're invited to game on with the Arcade Trivia for June Week 2! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the June Trivia Week 2 badge!
Earn the introductory skill badge by completing the Automate Data Capture at Scale with Document AI course. In this course, you learn how to extract, process, and capture data using Document AI.
Hey there! You're invited to game on with the Arcade Trivia for June Week 1! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the June Trivia Week 1 badge!
Apprenez à sécuriser vos déploiements sur Google Cloud, y compris : utiliser la gestion des bots de Cloud Armor pour limiter les risques liés aux bots et contrôler les accès émanant de clients automatisés ; utiliser les listes de blocage de Cloud Armor pour restreindre ou autoriser l'accès à votre équilibreur de charge HTTP(S) à la périphérie de Google Cloud ; appliquer des règles de sécurité Cloud Armor pour limiter l'accès aux objets mis en cache dans Cloud CDN et Google Cloud Storage ; et atténuer les failles courantes à l'aide des règles WAF de Cloud Armor.
Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.
Dans ce cours, vous découvrirez comment Gemini, un outil de collaboration Google Cloud optimisé par l'IA générative, aide à analyser les données client et à prédire les ventes de produits. Vous apprendrez également à identifier, classer et développer de nouveaux clients à l'aide des données client dans BigQuery. À l'aide d'ateliers pratiques, vous verrez en quoi Gemini améliore les workflows d'analyse de données et de machine learning. Duet AI a été rebaptisé Gemini, notre modèle nouvelle génération.
Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud -…
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
Si vous êtes un développeur cloud débutant et recherchez des exercices pratiques plus poussés au-delà des bases de Google Cloud, ce cours est fait pour vous. Il vous permettra d'acquérir de l'expérience pratique grâce aux ateliers qui traitent en profondeur de Cloud Storage et d'autres services applicatifs clés tels que Monitoring et Cloud Functions. Vous développerez des compétences précieuses que vous pourrez utiliser dans tous vos projets Google Cloud.
Hey there! You're invited to game on with the Arcade Trivia for May Week 3! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the May Trivia Week 3 badge!
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.
Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
Complete the intermediate Perform Predictive Data Analysis in BigQuery skill badge course to demonstrate skills in the following: creating datasets in BigQuery by importing CSV and JSON files; harnessing the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on soccer event data and evaluate the impressiveness of World Cup goals.
Hey there! You're invited to game on with the Arcade Trivia for May Week 2! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the May Trivia Week 2 badge!
Hey there! You're invited to game on with the Arcade Trivia for May Week 1! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the May Trivia Week 1 badge!
Terminez le cours intermédiaire Gérer Kubernetes dans Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la gestion des déploiements avec kubectl, la surveillance et le débogage d'applications sur Google Kubernetes Engine (GKE) et les techniques de livraison continue. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence numérique que vous pourrez partager avec votre réseau.
Complete the intermediate Perform Predictive Data Analysis in BigQuery skill badge course to demonstrate skills in the following: creating datasets in BigQuery by importing CSV and JSON files; harnessing the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on soccer event data and evaluate the impressiveness of World Cup goals.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Complete the introductory Monitor and Manage Google Cloud Resources skill badge to demonstrate skills in the following: granting and revoking IAM permissions; installing monitoring and logging agents; creating, deploying, and testing an event-driven Cloud Run function.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Hey there! You're invited to game on with the Arcade Trivia for April Week 4! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the April Trivia Week 4 badge!
Terminez le cours intermédiaire Développer des applications sans serveur avec Firebase pour recevoir un badge démontrant vos compétences dans les domaines suivants : la conception et la création d'applications Web sans serveur avec Firebase, l'utilisation de Firestore pour gérer des bases de données, l'automatisation des processus de déploiement à l'aide de Cloud Build et l'intégration des fonctionnalités de l'Assistant Google dans vos applications.
Dans ce bref cours consacré à l'intégration d'applications avec les modèles Gemini 1.0 Pro sur Google Cloud, vous découvrirez l'API Gemini et ses modèles d'IA générative. Vous apprendrez également à accéder aux modèles Gemini 1.0 Pro et Gemini 1.0 Pro Vision à partir du code. Enfin, vous testerez les capacités des modèles avec des requêtes contenant du texte, des images et des vidéos à partir d'une application.
Hey there! You're invited to game on with the Arcade Trivia for April Week 2! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the April Trivia Week 2 badge!
Hey there! You're invited to game on with the Arcade Trivia for April Week 3! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the April Trivia Week 3 badge!
Hey there! You're invited to game on with the Arcade Trivia for April Week 1! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the April Trivia Week 1 badge!
Hey there! You're invited to game on with the Arcade Trivia for March Week 1! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the March Trivia Week 1 badge!
Hey there! You're invited to game on with the Arcade Trivia for March Week 2! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the March Trivia Week 2 badge!
Hey there! You're invited to game on with the Arcade Trivia for February Week 4! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the February Trivia Week 4 badge!
Hey there! You're invited to game on with the Arcade Trivia for February Week 3! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the February Trivia Week 3 badge!
Hey there! You're invited to game on with the Arcade Trivia for February Week 2! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the February Trivia Week 2 badge!
Hey there! You're invited to game on with the Arcade Trivia for February Week 1! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the February Trivia Week 1 badge!
Hey there! You're invited to game on with Qwiklabs Trivia for December 2023! Play throughout the month and boost your cloud learning journey. This week, we're releasing a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the December week 4 badge!
Hey there! You're invited to game on with Qwiklabs Trivia for December 2023! Play throughout the month and boost your cloud learning journey. This week, we're releasing a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the December week 3 badge!
Hey there! You're invited to game on with Qwiklabs Trivia for December 2023! Play throughout the month and boost your cloud learning journey. This week, we're releasing a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the December week 1 badge!
Welcome to Qwiklabs Trivia for August! Each week, we will release a new set of questions to test your knowledge. You will have opportunities to play throughout the month. Give your career a boost with hands-on experience on GCP and partner services and earn the August badge.
Terminez le cours d'introduction Premiers pas avec Dataplex pour démontrer vos compétences dans les domaines suivants : création d'éléments Dataplex, création de types d'aspects et application de ces aspects aux entrées dans Dataplex.
Obtenez un badge de compétence en suivant le cours Premiers pas avec Pub/Sub dans lequel vous apprendrez à utiliser Pub/Sub depuis la console Cloud. Vous découvrirez également comment les jobs Cloud Scheduler peuvent vous faire gagner du temps et quand Pub/Sub Lite permet de réaliser des économies sur l'ingestion d'événements.
Complete the Analyze BigQuery Data in Connected Sheets skill badge to demonstrate that you can use Connected Sheets to access, analyze, visualize, and share billions of rows of BigQuery data from your Google Sheets spreadsheet.
Terminez le cours intermédiaire Implémenter des workflows DevOps dans Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de dépôts git avec Cloud Source Repositories, le lancement, la gestion et le scaling de déploiements sur Google Kubernetes Engine (GKE), et le développement de l'architecture de pipelines CI/CD qui automatisent la compilation d'images de conteneurs et leur déploiement vers GKE. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Terminez le cours intermédiaire Développer des applications sans serveur avec Firebase pour recevoir un badge démontrant vos compétences dans les domaines suivants : la conception et la création d'applications Web sans serveur avec Firebase, l'utilisation de Firestore pour gérer des bases de données, l'automatisation des processus de déploiement à l'aide de Cloud Build et l'intégration des fonctionnalités de l'Assistant Google dans vos applications.
Obtenez le badge de compétence Débutant en suivant le cours API Cloud Speech : 3 applications, dans lequel vous apprendrez à utiliser les outils d'API liés à la parole pour effectuer de la synthèse et de la reconnaissance vocales.
Earn a skill badge by completing the Develop with Apps Script and AppSheet skill badge course, where you learn how to build chat bots and how to use the script editor in any document.
Earn a skill badge by completing the Integrate BigQuery Data and Google Workspace using Apps Script quest, where you learn ways to connect Workspace products with BigQuery by using App Sheet. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Obtenez le badge de compétence de niveau Débutant en suivant le cours Configurer des comptes de service et des rôles IAM pour Google Cloud. Vous y découvrirez les comptes de service, les rôles personnalisés et comment définir des autorisations à l'aide de gcloud.
Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud.
Le cours "Explorateur de l'IA générative – Vertex AI" est un ensemble d'ateliers consacrés à l'utilisation de l'IA générative sur Google Cloud. Vous apprendrez à utiliser les modèles de la famille d'API PaLM Vertex AI comme text-bison, chat-bison, et textembedding-gecko. Vous découvrirez également comment rédiger des prompts, quelles bonnes pratiques appliquer, et comment utiliser l'IA générative pour l'idéation, la classification et l'extraction de texte, la création de synthèses, et plus encore. Enfin, vous apprendrez à régler un modèle de fondation à l'aide de l'entraînement personnalisé Vertex AI et à le déployer sur un point de terminaison Vertex AI.
Earn the introductory skill badge by completing the Build a Website on Google Cloud skill badge course. This course is based on the Get Cooking in Cloud series and covers`:`Deploying a website on Cloud RunHosting a web app on Compute EngineCreating, deploying, and scaling your website on Google Kubernetes EngineMigrating from a monolithic application to a microservices architecture using Cloud Build
Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
La gestion des réseaux est l'un des aspects les plus importants du cloud computing. Il s'agit de la structure sous-jacente de Google Cloud, qui relie l'ensemble de vos ressources et services entre eux. Ce cours aborde les services de gestion des réseaux essentiels de Google Cloud et vous permet de vous familiariser avec des outils spécialisés dans le développement de réseaux matures grâce à des ateliers pratiques. De la découverte des tenants et aboutissants des VPC à la création d'équilibreurs de charge professionnels, Automatiser le déploiement et gérer le trafic sur un réseau Google Cloud vous permettra d'acquérir l'expérience pratique nécessaire pour développer des réseaux robustes.
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
Terminez le cours intermédiaire Déployer des applications Kubernetes sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la configuration et la création d'images de conteneur Docker, la création et la gestion de clusters Google Kubernetes Engine (GKE), l'utilisation de kubectl pour gérer efficacement les clusters et le déploiement d'applications Kubernetes en appliquant des pratiques de livraison continue (CD) robustes.
Suivez le cours Développer votre réseau Google Cloud et obtenez un badge de compétence. Dans ce cours, vous avez appris plusieurs façons de déployer et de surveiller des applications. Pour cela, vous avez vu comment parcourir les rôles IAM et ajouter/supprimer l'accès au projet, créer des réseaux VPC, déployer et surveiller des VM Compute Engine, rédiger des requêtes SQL, déployer et surveiller des VM dans Compute Engine, mais aussi comment déployer des applications à l'aide de Kubernetes avec plusieurs approches de déploiement.
Ce cours d'introduction est unique en son genre parmi les autres offres de cours. Il se compose d'ateliers pratiques conçus pour permettre aux professionnels de l'informatique de se familiariser avec les sujets et les services au programme de la certification Google Cloud Certified Associate Cloud Engineer. De l'IAM à la gestion de réseaux en passant par le déploiement avec Kubernetes Engine, vous allez suivre dans ce cours des ateliers spécifiques qui mettront à l'épreuve vos connaissances sur Google Cloud. Attention : même si ces ateliers constituent une bonne base pour développer vos compétences, nous vous recommandons de consulter en supplément le guide de l'examen et les autres ressources de préparation disponibles.
Suivez le cours Configurer un réseau Google Cloud et obtenez un badge de compétence. Vous allez apprendre à effectuer des tâches élémentaires de gestion de réseaux sur Google Cloud Platform : créer un réseau personnalisé, ajouter des règles de pare-feu de sous-réseau, puis créer des VM et tester la latence lorsqu'elles communiquent entre elles.
Welcome to Qwiklabs Trivia for July! Each week, we will release a new set of questions to test your knowledge. You will have opportunities to play throughout the month. Give your career a boost with hands-on experience on GCP and partner services and earn the July badge.
Terminez le cours d'introduction Implémenter l'équilibrage de charge sur Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de commandes gcloud et l'utilisation de Cloud Shell, la création et le déploiement de machines virtuelles dans Compute Engine, ainsi que la configuration d'équilibreurs de charge réseau et HTTP. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Complete the introductory Secure BigLake Data skill badge course to demonstrate skills with IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables.
The demand for data skills is growing rapidly, and we want you to get ahead! According to a report by the McKinsey Global Institute, the demand for data scientists and analysts is expected to grow by 150% by 2025. There are a lot of different aspects to any data role, so it's important to start with the basics - and we’ve got you covered. Learn how to tap into ML APIs, dive into your first data lake, and learn how the experts think about securing data. No experience required.
Complete the introductory Get Started with Sensitive Data Protection skill badge course to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud.
Obtenez un badge de compétence en suivant le cours App Engine : 3 applications, où vous apprendrez à utiliser App Engine avec Python, Go et PHP.
Obtenez un badge de compétence en suivant le cours Google Cloud Compute : principes de base, où vous apprendrez à utiliser des machines virtuelles (VM), des disques persistants et des serveurs Web à l'aide de Compute Engine. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.
Earn a skill badge by completing the Tag and Discover BigLake Data skill badge course, where you use BigQuery, BigLake, and Data Catalog within Dataplex to create, tag, and discover BigLake tables.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Earn a skill badge by completing the Networking Fundamentals on Google Cloud quest, where you learn how to work with VPC networks and load balancers on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Demand for cloud-skilled workers is rising. According to a report by Indeed, cloud computing jobs are expected to grow by 22% over the next five years, much faster than the average for all occupations. Play now to get hands-on experience building with Google Cloud's powerful coding and infrastructure management tools. Each lab teaches and tests your growing tech skills, and sets you on the path to your first Google Cloud credential.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
Dans ce cours, nous définirons ce qu'est le machine learning et ce qu'il peut apporter à votre entreprise. Vous verrez quelques démonstrations de l'utilisation du ML et découvrirez ses termes clés, comme instances, caractéristiques et étiquettes. Lors des ateliers interactifs, vous vous entraînerez à appeler les API de ML préentrainées disponibles et à construire vos propres modèles de machine learning en utilisant simplement SQL avec BigQuery ML.
Le troisième cours de cette série s'intitule "Achieving Advanced Insights with BigQuery". Notre objectif est ici d'approfondir vos connaissances en SQL en abordant en détail les fonctions avancées et en vous apprenant à décomposer les requêtes complexes en étapes faciles à gérer. Nous allons étudier l'architecture interne de BigQuery (stockage segmenté basé sur des colonnes), ainsi que des concepts SQL avancés tels que les champs imbriqués et répétés, en utilisant pour cela des objets ARRAY et STRUCT. Pour finir, nous verrons comment optimiser les performances de vos requêtes et sécuriser vos données à l'aide des vues autorisées.Une fois que vous aurez terminé ce cours, inscrivez-vous au cours "Applying Machine Learning to Your Data with Google Cloud".
Ceci est le deuxième cours de la série "Data to Insights". Ici, nous verrons comment ingérer de nouveaux ensembles de données externes dans BigQuery et les visualiser avec Looker Studio. Nous aborderons également des concepts SQL intermédiaires, tels que les jointures et les unions de plusieurs tables, qui vous permettront d'analyser les données de différentes sources. Remarque : Même si vous avez des connaissances en SQL, certaines spécificités de BigQuery (comme la gestion du cache de requêtes et des caractères génériques de table) peuvent ne pas vous être familières.Une fois que vous aurez terminé ce cours, inscrivez-vous au cours "Achieving Advanced Insights with BigQuery".
Ce cours décrit les problématiques courantes auxquelles se confrontent les analystes de données et explique comment les résoudre à l'aide des outils de big data disponibles sur Google Cloud. Vous découvrirez quelques notions de SQL et apprendrez comment utiliser BigQuery et Dataprep pour analyser et transformer vos ensembles de données. Il s'agit du premier cours de la série "From Data to Insights with Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Creating New BigQuery Datasets and Visualizing Insights".
In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.
Terminez le cours d'introduction Préparer les données à utiliser pour les tableaux de bord et rapports Looker pour recevoir un badge démontrant vos compétences dans les domaines suivants : le filtrage, le tri et le croisement de données ; la fusion des résultats de différentes explorations Looker ; et l'utilisation de fonctions et d'opérateurs pour créer des tableaux de bord et des rapports Looker en vue de l'analyse et de la visualisation des données.
Terminez le cours intermédiaire Créer des modèles de ML avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'évaluation de modèles de machine learning avec BigQuery ML pour générer des prédictions de données. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Créer des modèles de machine learning en quelques minutes au lieu de plusieurs heures grâce à SQL, ça vous intéresse ? BigQuery ML démocratise le machine learning en permettant aux analystes de données de créer, d'entraîner et d'évaluer des modèles de ML, puis de les utiliser pour faire des prédictions, en s'appuyant sur leurs outils SQL et leurs connaissances actuelles dans ce langage. Dans cette série d'ateliers, vous allez essayer différents types de modèles et apprendre ce qui caractérise un bon modèle.
L'utilisation de la puissance de calcul à grande échelle pour détecter des modèles et lire des images est l'une des technologies fondamentales de l'IA, des voitures sans conducteur à la reconnaissance faciale. Google Cloud Platform offre une vitesse et une précision de pointe grâce à des systèmes qui peuvent être utilisés simplement en appelant des API. Doté en plus d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Dans ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement de l'image. Au cours de divers ateliers, vous allez étiqueter des images, détecter des visages et des points de repère, mais aussi extraire, analyser et traduire du texte à partir d'images.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Avec ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement du langage. Au cours de divers ateliers, vous allez extraire des entités à partir de texte, effectuer une analyse des sentiments et de la syntaxe, ainsi que transcrire du contenu audio avec l'API Speech-to-Text.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Aujourd'hui, le big data, le machine learning et l'intelligence artificielle sont des thèmes en vogue dans le domaine de l'informatique. Ce sont toutefois des disciplines pointues, pour lesquelles il n'est pas toujours simple de trouver des documents de référence. Heureusement, Google Cloud propose des services conviviaux dédiés, ainsi que ce cours d'introduction, pour vous aider à faire vos premiers pas avec des outils comme BigQuery, l'API Cloud Speech et Video Intelligence.
Vous souhaitez générer des insights à partir de vos données marketing et créer des tableaux de bord ? Réunissez toutes vos données au même endroit afin d'effectuer des analyses à grande échelle et de créer des modèles. Apprenez à utiliser BigQuery et à interroger vos données pour créer des insights utiles, reproductibles et évolutifs. BigQuery est la base de données d'analyse à faible coût de Google, entièrement gérée et qui ne nécessite aucune opération (NoOps). Avec BigQuery, vous pouvez interroger des téraoctets de données sans avoir à gérer d'infrastructure ni faire appel à un administrateur de base de données. Basé sur le langage SQL et le modèle de paiement à l'usage, BigQuery vous permet de vous concentrer sur l'analyse des données pour en dégager des informations pertinentes.
Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge
Vous voulez créer un entrepôt de données ou l'optimiser ? Découvrez les bonnes pratiques d'extraction, de transformation et de chargement des données dans Google Cloud avec BigQuery. Dans cette série d'ateliers interactifs, vous allez créer votre propre entrepôt de données et l'optimiser en utilisant différents ensembles de données publics à grande échelle de BigQuery. BigQuery est la base de données d'analyse à faible coût de Google, entièrement gérée et qui ne nécessite aucune opération (NoOps). Avec BigQuery, vous pouvez interroger des téraoctets de données sans avoir à gérer d'infrastructure ni faire appel à un administrateur de base de données. Basé sur le langage SQL et le modèle de paiement à l'usage, BigQuery vous permet de vous concentrer sur l'analyse des données pour en dégager des informations pertinentes.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery.