Yun Long Chong
Date d'abonnement : 2020
Ligue de bronze
3000 points
Date d'abonnement : 2020
Obtenez un badge de compétence avancé en suivant le cours Utiliser des API de machine learning sur Google Cloud, qui présente les fonctionnalités de base des technologies de machine learning et d'IA suivantes : l'API Cloud Vision, l'API Cloud Translation et l'API Cloud Natural Language. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Big data, machine learning et données scientifiques ? Il semble que ce soit la combinaison parfaite. Dans cette quête avancée, vous allez vous familiariser avec des services GCP tels que Big Query, Dataproc et Tensorflow, que vous appliquerez à des cas utilisant des ensembles de données scientifiques réelles. En vous faisant acquérir de l'expérience avec des tâches telles que l'analyse des données sismiques et l'agrégation d'images satellites, le traitement de données scientifiques développera vos compétences dans le domaine du Big data et du machine learning, et vous aidera à résoudre les problèmes que vous rencontrez dans différentes disciplines scientifiques.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Ce cours d'introduction explique aux développeurs d'applications comment l'écosystème de Google Cloud peut les aider à créer des applications cloud natives sécurisées, évolutives et intelligentes. Vous apprendrez à créer et à faire évoluer des applications sans configurer d'infrastructure, à exécuter des analyses de données, à dégager des insights à partir de données, et à utiliser des API de ML pré-entraînées pour tirer parti du machine learning, même si vous n'êtes pas un expert en la matière. Vous découvrirez également l'intégration parfaite de divers services et API de Google afin de créer des applications intelligentes.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Vous voulez créer un entrepôt de données ou l'optimiser ? Découvrez les bonnes pratiques d'extraction, de transformation et de chargement des données dans Google Cloud avec BigQuery. Dans cette série d'ateliers interactifs, vous allez créer votre propre entrepôt de données et l'optimiser en utilisant différents ensembles de données publics à grande échelle de BigQuery. BigQuery est la base de données d'analyse à faible coût de Google, entièrement gérée et qui ne nécessite aucune opération (NoOps). Avec BigQuery, vous pouvez interroger des téraoctets de données sans avoir à gérer d'infrastructure ni faire appel à un administrateur de base de données. Basé sur le langage SQL et le modèle de paiement à l'usage, BigQuery vous permet de vous concentrer sur l'analyse des données pour en dégager des informations pertinentes.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Avec ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement du langage. Au cours de divers ateliers, vous allez extraire des entités à partir de texte, effectuer une analyse des sentiments et de la syntaxe, ainsi que transcrire du contenu audio avec l'API Speech-to-Text.
L'utilisation de la puissance de calcul à grande échelle pour détecter des modèles et lire des images est l'une des technologies fondamentales de l'IA, des voitures sans conducteur à la reconnaissance faciale. Google Cloud Platform offre une vitesse et une précision de pointe grâce à des systèmes qui peuvent être utilisés simplement en appelant des API. Doté en plus d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Dans ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement de l'image. Au cours de divers ateliers, vous allez étiqueter des images, détecter des visages et des points de repère, mais aussi extraire, analyser et traduire du texte à partir d'images.