tran norris
メンバー加入日: 2023
ブロンズリーグ
100 ポイント
メンバー加入日: 2023
Google ドライブは Google のクラウドベースのファイル ストレージ サービスです。Google ドライブでは、すべての作業を 1 か所にまとめ、追加のソフトウェアを必要とせずにさまざまなファイル形式を表示でき、どのデバイスからでもファイルにアクセスできます。 このコースでは、Google ドライブの操作方法を学びます。ファイルやフォルダをアップロードする方法や、ファイルの種類に関係なく作業する方法のほか、Google ドライブでファイルを簡単に表示、配置、整理、変更、削除する方法についても学びます。 Google ドライブには共有ドライブが含まれています。共有ドライブを使用して、チームでファイルを保存したり、検索したり、ファイルにアクセスしたりできます。新しい共有ドライブの作成、メンバーの追加と管理、共有ドライブのコンテンツの管理などの方法を学びます。 Google Workspace とはつまり、コラボレーションと共有機能そのものです。Google ドライブで利用できる共有オプションを確認し、さまざまなユーザー ロールや割り当て可能な権限について学びます。 また、テンプレートを使用して一貫性を確保し、時間を節約する方法についても確認します。 Google ドライブには、さまざまなツールやオプションが用意されています。このコースでは、それらのオプションの中から、オフラインで作業する方法、ドライブ ファイル ストリームを使用する方法、Google Workspace Marketplace からアプリをインストールする方法について説明します。
Google ドキュメントを使用すると、ドキュメントがクラウドに保存され、任意のパソコンまたはデバイスからアクセスできます。ウェブブラウザでドキュメントを作成および編集できます。特別なソフトウェアは必要ありません。さらに、複数のユーザーが同時に作業することができ、ユーザーが変更を行ったときにその変更を確認することも可能です。各変更は自動的に保存されます。 このコースでは、Google ドキュメントの開き方、新しいドキュメントの作成と書式設定の方法、新しいドキュメントへのテンプレートの適用方法について説明します。 目次、ヘッダーとフッター、表、図、画像などを使用してドキュメントの質を高める方法を説明します。 ドキュメントを他のユーザーと共有する方法について説明します。共有オプションのほか、共同編集者のロールと権限を確認します。ドキュメントのバージョンを管理する方法について説明します。 Google ドキュメントを使用すると、同じドキュメントで他のユーザーとリアルタイムで共同作業できます。ドキュメント内のコメントとアクション アイテムを作成、管理する方法について説明します。 複数の Google ドキュメント ツールを確認します。自分のスタイルに合わせて環境設定を行う方法を理解し、Google Explore などのツールを使用してコンテンツの価値を高める方法を検討します。
Google カレンダーを使用すると、会議や予定のスケジュールを設定することや、今後のアクティビティに関するリマインダーを受信することが簡単にでき、今後の予定を常に把握することができます。Google カレンダーはチーム向けに設計されているため、スケジュールを他のユーザーと共有することや、複数の共用カレンダーを作成してチームで使用することが簡単にできます。 このコースでは、Google カレンダーの予定を作成して管理する方法(既存の予定の更新、予定の削除と復元、カレンダーの検索)を学びます。 リマインダー、タスク、予約枠など、さまざまな種類の予定をどのようなときに使うのかを理解できるようになります。 自分の作業のやり方に合わせてカスタマイズ可能な Google カレンダーの設定について詳しく見ていきます。 追加のカレンダーを作成する方法、他のユーザーとカレンダーを共有する方法、組織内の他のカレンダーにアクセスする方法も学びます。
Gmail は Google のクラウドベースのメールサービスです。ウェブブラウザだけであらゆるパソコンやデバイスからメッセージにアクセスできます。 このコースでは、メッセージの作成、送信、返信方法について学習します。また、Gmail メッセージに適用できるいくつかの一般的な操作についても説明し、Gmail のラベルを使用してメールを整理する方法を学習します。 一般的な Gmail の設定と機能について説明します。たとえば、個人の連絡先やグループを管理する方法、Gmail の受信トレイを自分の作業の進め方に合わせてカスタマイズする方法、独自のメール署名とテンプレートを作成する方法について学習します。 Google は検索で有名です。Gmail にも強力な検索機能とフィルタ機能が含まれています。Gmail の高度な検索機能を使用して、メッセージを自動的にフィルタする方法を学習します。
クラウド テクノロジーは組織に大きな価値をもたらします。クラウド テクノロジーの力をデータと組み合わせることで、その価値はさらに大きなものとなり、新しいカスタマー エクスペリエンスを提供できる可能性があります。「Google Cloud によるデータ トランスフォーメーションの探求」では、データが組織にもたらす価値と、Google Cloud でデータを有用かつアクセス可能なものにする方法を学習します。このコースは「クラウド デジタル リーダー」学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。
クラウド テクノロジーとデジタル トランスフォーメーションに大きな期待が寄せられていますが、疑問点も多く残っています。 例: クラウド テクノロジーとは何か?デジタル トランスフォーメーションとは何を意味しているか?クラウド テクノロジーが組織にどう役立つのか?どこから着手するのか? このような疑問をお持ちなら、このコースはぴったりです。このコースでは、デジタル トランスフォーメーションにおいて多くの企業が直面する機会と課題のタイプについてご説明します。このデジタル トランスフォーメーションの入門コースなら、クラウド テクノロジーに関する知識を深めて自分の業務に活用するとともに、今後のビジネスの成長にも役立てていただけます。このコースは クラウド デジタル リーダー 学習プログラムの一部です。
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。
このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。
このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。
このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。
このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。
このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。
「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。