Le cours "IA générative : se familiariser avec le domaine" est le troisième du parcours de formation "Leader en IA générative". L'IA générative change notre façon de travailler et d'interagir avec le monde autour de nous. En tant que responsable, comment pouvez-vous exploiter son potentiel pour obtenir des résultats commerciaux concrets ? Dans ce cours, vous allez découvrir les différentes couches qui composent une solution d'IA générative, les offres de Google Cloud et les facteurs à prendre en compte au moment de choisir une solution.
Le cours "Agents d'IA générative : transformer l'entreprise" est le cinquième et dernier du parcours de formation "Leader en IA générative". Ce cours aborde la façon dont les entreprises peuvent utiliser des agents d'IA générative personnalisés pour relever des défis métier spécifiques. Des exercices pratiques vous apprendront à créer un agent d'IA générative de base tout en découvrant les composants de ces agents, comme les modèles, les boucles de raisonnement et les outils.
Le cours "Applications d'IA générative : changez votre façon de travailler" est le quatrième du parcours de formation "Leader en IA générative". Ce cours présente les applications d'IA générative de Google, telles que Gemini pour Workspace et NotebookLM. Il vous guide à travers des concepts comme l'ancrage, la génération augmentée par récupération, la création de requêtes efficaces et la conception de workflows automatisés.
Le cours "IA générative : découvrir les concepts fondamentaux" est le deuxième du parcours de formation "Leader en IA générative". Ce cours vous permettra de découvrir les concepts fondamentaux de l'IA générative en examinant les différences entre l'IA, le ML et l'IA générative. Vous comprendrez également comment l'IA générative permet de relever les défis métier à l'aide des différents types de données. Enfin, vous découvrirez les stratégies de Google Cloud pour gérer les limites des modèles de fondation et quelles sont les grandes problématiques du développement et du déploiement d'une IA responsable et sécurisée.
Le cours "IA générative : au-delà du chatbot" est le premier du parcours de formation "Leader en IA générative" et n'a aucun prérequis. Ce cours vise à approfondir votre compréhension de base des chatbots afin de révéler le véritable potentiel de l'IA générative pour votre entreprise. Vous découvrirez des concepts tels que les modèles de fondation et le prompt engineering (ingénierie des requêtes), qui sont essentiels pour exploiter toute la puissance de l'IA générative. Ce cours vous aidera également à identifier les facteurs à prendre en compte pour développer une stratégie d'IA générative efficace pour votre entreprise.
Ce cours aide les participants à créer un plan de formation pour l'examen de certification afin de devenir ingénieur professionnel en machine learning (PMLE, Professional Machine Learning Engineer). Ils découvriront l'ampleur et le champ d'application des domaines abordés lors de l'examen. Ils détermineront s'ils sont prêts à passer l'examen et créeront leur propre plan de formation.
Avec ce cours, explorez les technologies de recherche, les outils et les applications optimisés par l'IA. Découvrez la recherche sémantique, qui utilise les embeddings vectoriels (ou "plongements vectoriels"), la recherche hybride, qui combine les approches sémantique et par mots-clés, et la génération augmentée par récupération (RAG), qui réduit les hallucinations générées par l'IA en agissant comme un agent ancré. Enfin, acquérez une expérience pratique de Vertex AI Vector Search afin de créer votre moteur de recherche intelligent.
(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.
Conçu pour les développeurs de tous niveaux, ce cours vous présente les principales caractéristiques et fonctionnalités de Gemini Code Assist, un assistant de développement d'applications optimisé par l'IA pour Google Cloud. Des suggestions de code intelligentes à la saisie semi-automatique, en passant par la détection d'erreurs en temps réel et l'aide à la refactorisation, vous découvrirez comment Gemini Code Assist peut améliorer considérablement votre productivité et la qualité de votre code. Il vous fera également gagner un temps précieux pour que vous puissiez vous concentrer sur des tâches plus productives et agréables.
This on-demand course provides partners the skills required to design, deploy, and monitor Vertail AI Search for Commerce solutions including retail search and recommendation AI for enterprise customers.
Ce cours apporte aux professionnels du machine learning les techniques, les bonnes pratiques et les outils essentiels pour évaluer les modèles d'IA prédictive et générative. L'évaluation des modèles est primordiale pour s'assurer que les systèmes de ML fournissent des résultats fiables, précis et de haut niveau en production. Les participants acquerront une connaissance approfondie de diverses métriques et méthodologies d'évaluation, ainsi que de leur application appropriée dans différents types de modèles et tâches. Le cours mettra l'accent sur les défis uniques posés par les modèles d'IA générative et proposera des stratégies pour les relever efficacement. Grâce à la plate-forme Vertex AI de Google Cloud, les participants apprendront à implémenter des processus d'évaluation rigoureux pour la sélection, l'optimisation et la surveillance continue des modèles.
Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.
Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.
Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.
Quelles sont les bonnes pratiques pour implémenter le machine learning sur Google Cloud ? En quoi consiste la plate-forme Vertex AI et comment pouvez-vous l'utiliser pour créer, entraîner et déployer rapidement des modèles de machine learning AutoML sans écrire une seule ligne de code ? Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google aborde le machine learning d'une façon particulière, qui consiste à fournir une plate-forme unifiée pour les ensembles de données gérés, ainsi qu'un magasin de caractéristiques et un moyen de créer, d'entraîner et de déployer des modèles de machine learning sans écrire une seule ligne de code. Il s'agit également de permettre aux utilisateurs d'étiqueter les données et de créer des notebooks Workbench à l'aide de frameworks tels que TensorFlow, Scikit Learn, Pytorch et R. Avec notre plate-forme Vertex AI, il est également possible d'entraîner des modèles personnalisés, de créer des pipelines de composants, …
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.
Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.
Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.
Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.
Suivez les cours Introduction to Generative AI, Introduction to Large Language Models et Introduction to Responsible AI, et obtenez un badge de compétence. Votre réussite au quiz final démontrera que vous comprenez les concepts de base relatifs à l'IA générative. Un badge de compétence est un badge numérique délivré par Google Cloud. Il atteste de votre expertise sur les produits et services Google Cloud. Partagez votre badge de compétence en rendant votre profil public et en l'ajoutant à votre profil sur les réseaux sociaux.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.