Mennish Pal
成为会员时间:2024
成为会员时间:2024
Color your learning journey with new skills this March! Get hands-on with Looker, BigQuery, and Cloud Storage to organize, analyze, and present data in fresh new ways. Whether you're creating dashboards or mapping insights, these labs help you turn raw data into clear, meaningful information. No experience? No problem!
Gemini for Google Workspace 是一項外掛程式,可讓使用者存取生成式 AI 功能。本課程使用影片、實作活動和練習範例,深入介紹 Google 雲端硬盤中的 Gemini 的功能。 課程結束後,您將具備 Google 雲端硬盤中的 Gemini 的知識及技能,可自信地運用這項工具提升工作流程的效率。
Gemini 版 Google Workspace 是一項外掛程式,可讓使用者存取生成式 AI 功能。本課程會使用影片、實作活動和練習範例,深入介紹 Gemini 版 Google Meet 的功能。您會學到如何透過 Gemini 生成背景圖片、提升視訊品質及翻譯字幕。本課程結束後,您將具備 Gemini 版 Google Meet 的知識及技能,安心運用這項工具提高視訊會議的效率。
安裝 Gemini 版 Google Workspace 外掛程式後,客戶就能在 Google Workspace 使用生成式 AI 功能。這堂迷你課程會介紹 Gemini 的主要功能,並說明如何在 Google 試算表善用這些功能,提高生產力和效率。
Gemini 版 Google Workspace 是一項外掛程式,可讓客戶在 Google Workspace 使用生成式 AI 功能。這堂迷你課程會介紹 Gemini 的主要功能,並說明如何在 Google 簡報善用這些功能,提高生產力和效率。
使用者將能透過 Gemini 版 Google Workspace 外掛程式運用生成式 AI 功能。本課程會使用影片、實作活動和練習範例,深入介紹 Gemini 版 Google 文件的功能。您將學到如何透過 Gemini 使用提示生成撰寫內容、編輯寫好的文字,以提升整體工作效率。本課程結束後,您將具備 Gemini 版 Google 文件的知識及技能,可自信地運用這項工具提升寫作品質。
Gemini 版 Google Workspace 是一項外掛程式,可讓客戶在 Google Workspace 使用生成式 AI 功能。這堂迷你課程會介紹 Gemini 的主要功能,並說明如何在 Gmail 善用這些功能,提高生產力和效率。
客戶能透過 Gemini 版 Google Workspace 外掛程式在 Google Workspace 使用生成式 AI 功能。本學習路徑會介紹 Gemini 的主要功能,並說明如何在 Google Workspace 善用這些功能,提高生產力和效率。
本課程會介紹 Vertex AI Studio。您可以運用這項工具和生成式 AI 模型互動、根據商業構想設計原型,並投入到正式環境。透過身歷其境的應用實例、有趣的課程及實作實驗室,您將能探索從提示到正式環境的生命週期,同時學習如何將 Vertex AI Studio 運用在多模態版 Gemini 應用程式、提示設計、提示工程和模型調整。這個課程的目標是讓您能運用 Vertex AI Studio,在專案中發揮生成式 AI 的潛能。
本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。
這堂課程將說明變換器架構,以及基於變換器的雙向編碼器表示技術 (BERT) 模型,同時帶您瞭解變換器架構的主要組成 (如自我注意力機制) 和如何用架構建立 BERT 模型。此外,也會介紹 BERT 適用的各種任務,像是文字分類、問題回答和自然語言推論。課程預計約 45 分鐘。
本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。
本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。
本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。
這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。