Rama Lesmana
Membro dal giorno 2020
Campionato Argento
6600 punti
Membro dal giorno 2020
Earn a skill badge by completing the Automate Interactions with Contact Center AI quest, where you will learn about the features of Contact Center AI, including how to Build a virtual agent, Design conversation flows for your virtual agent; Add a phone gateway to your virtual agent; Use Dialogflow for troubleshooting; Review logs and debug your virtual agent. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
In questo Laboratorio scoprirai le quattro architetture dei siti web di Google Cloud utilizzabili per accertarti che il tuo sito web sia disponibile e scalabile. Completa questo Laboratorio, compreso il Challenge Lab finale, per ricevere un esclusivo badge digitale Google Cloud. Il Challenge Lab non fornisce passaggi normativi, ma richiede la creazione di soluzioni riducendo al minimo le indicazioni e metterà alla prova le tue abilità tecnologiche relative a Google Cloud. Questo Laboratorio si basa sulla serie di video Get Cooking in Cloud.
Earn a skill badge by completing the Build Interactive Apps with Google Assistant quest, where you will learn how to build Google Assistant applications, including how to: create an Actions project, integrate Dialogflow with an Actions project, test your application with Actions simulator, build an Assistant application with flash cards template, integrate customer MP3 files with your Assistant application, add Cloud Translation API to your Assistant application, and use APIs and integrate them into your applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
Completa il corso introduttivo con badge delle competenze Genera insight dai dati BigQuery per dimostrare le tue competenze nei seguenti ambiti: scrivere query SQL, eseguire query su tabelle pubbliche, caricare dati di esempio in BigQuery, risolvere i problemi di sintassi comuni con lo strumento di convalida query in BigQuery e creare report in Looker Studio collegando ai dati di BigQuery.
Want to build ML models in minutes instead of hours using just SQL? BigQuery ML democratizes machine learning by letting data analysts create, train, evaluate, and predict with machine learning models using existing SQL tools and skills. In this series of labs, you will experiment with different model types and learn what makes a good model.
This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.
Big data, machine learning e intelligenza artificiale sono i principali argomenti di computing trattati attualmente, ma questi campi sono piuttosto specializzati ed è complicato reperire materiale introduttivo. Fortunatamente, Google Cloud offre servizi facili da usare in queste aree e con questo corso di livello introduttivo, in modo da poter fare i primi passi con strumenti come BigQuery, API Cloud Speech e Video Intelligence.
Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.
Ottieni il corso intermedio con badge delle competenze Prepara i dati per le API ML su Google Cloud per dimostrare le tue competenze nei seguenti ambiti: pulizia dei dati con Dataprep di Trifacta, esecuzione delle pipeline di dati in Dataflow, creazione dei cluster ed esecuzione dei job Apache Spark in Dataproc e richiamo delle API ML tra cui l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text e l'API Video Intelligence.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
This is the second of two Quests of hands-on labs derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this second Quest, covering chapter 9 through the end of the book, you extend the skills practiced in the first Quest, and run full-fledged machine learning jobs with state-of-the-art tools and real-world data sets, all using Google Cloud tools and services.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
Se sei uno sviluppatore cloud principiante che vuole fare ancora pratica Google Cloud Essentials, questo corso fa al caso tuo. Acquisirai esperienza pratica attraverso lab specifici su Cloud Storage e altri servizi per applicazioni chiave come Monitoring e Cloud Functions. Svilupperai competenze preziose applicabili a qualsiasi iniziativa Google Cloud.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Non è un segreto che il machine learning sia uno dei campi in più rapida crescita nel settore tecnologico e la piattaforma Google Cloud è stata fondamentale per promuoverne lo sviluppo. Con le numerose API, Google Cloud dispone di uno strumento adeguato praticamente per qualsiasi job di machine learning. In questo corso introduttivo, farai pratica con il machine learning applicato all'elaborazione del linguaggio naturale partecipando ai lab che ti consentiranno di estrarre entità da un testo ed eseguire analisi del sentiment e della sintassi, nonché utilizzare l'API Speech-to-Text per la trascrizione.