Mahek Agarwal
Date d'abonnement : 2022
Date d'abonnement : 2022
Complete the intermediate Déployer des applications Kubernetes sur Google Cloud skill badge to demonstrate skills in the following: configuring and building Docker container images, creating and managing Google Kubernetes Engine (GKE) clusters, utilizing kubectl for efficient cluster management, and deploying Kubernetes applications with robust continuous delivery (CD) practices. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
This course helps you understand how to use Chronicle to properly handle security incidents.
Today, cloud adoption is skyrocketing, propelling the demand for cloud-savvy professionals to newer heights. It is time for you to position yourself at the forefront of this sought-after talent pool and elevate your marketability by acquiring your first Google Cloud Credential—an invaluable asset that emphasizes your expertise. And the best part? -No prior experience is needed for you to game on!
This course helps developers customize Chronicle and augment its abilities with third party integrations.
Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.
Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.
Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.
Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.
Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
Learn the technical aspects you need to know about Chronicle and how it can help you detect and action threats.
This course will familiarize you with the core functionality of Chronicle, including the user interface, connections, and settings.
Gemini pour Google Workspace est un module complémentaire qui permet aux utilisateurs d'accéder à des fonctionnalités d'IA générative. Ce cours explore les fonctionnalités de Gemini dans Google Docs au moyen de vidéos pédagogiques, d'activités pratiques et d'exemples concrets. Vous allez apprendre à utiliser Gemini pour générer des contenus écrits basés sur des requêtes. Vous allez également découvrir comment l'utiliser pour modifier du texte que vous avez déjà rédigé, vous aidant ainsi à améliorer votre productivité globale. À la fin de ce cours, vous disposerez des connaissances et des compétences nécessaires pour utiliser Gemini en toute confiance dans Google Docs afin d'améliorer vos écrits.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Sheets.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Gmail.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce parcours de formation, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Workspace.