가입 로그인

Google Cloud 콘솔에서 기술 적용

Manoj Dhar

회원 가입일: 2019

다이아몬드 리그

13129포인트
엔드 투 엔드 SDLC를 위한 Gemini Earned 8월 8, 2025 EDT
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 8월 1, 2025 EDT
책임감 있는 AI 소개 Earned 8월 1, 2025 EDT
대규모 언어 모델 소개 Earned 8월 1, 2025 EDT
생성형 AI 소개 Earned 8월 1, 2025 EDT
개발자를 위한 책임감 있는 AI: 해석 가능성 및 투명성 Earned 7월 31, 2025 EDT
개발자를 위한 책임감 있는 AI: 공정성 및 편향 Earned 7월 28, 2025 EDT
Vertex AI로 머신러닝 작업(MLOps): 모델 평가 Earned 7월 27, 2025 EDT
생성형 AI를 위한 머신러닝 작업(MLOps) Earned 7월 25, 2025 EDT
BigQuery의 Gemini로 생산성 향상 Earned 7월 24, 2025 EDT
Vertex AI의 프롬프트 설계 Earned 7월 21, 2025 EDT
BigQuery에서 Gemini 모델 사용하기 Earned 7월 6, 2025 EDT
BigQuery 머신러닝을 사용한 추론 Earned 7월 6, 2025 EDT
데이터 과학자와 분석가를 위한 Gemini Earned 7월 6, 2025 EDT
Gemini 및 Imagen으로 실제 AI 애플리케이션 빌드하기 Earned 7월 5, 2025 EDT

이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 Google 제품 및 서비스를 사용해 애플리케이션을 개발, 테스트, 배포, 관리하는 데 어떤 도움이 되는지 알아봅니다. Gemini의 도움을 받아 웹 애플리케이션을 개발 및 빌드하고, 애플리케이션의 오류를 수정하고, 테스트를 개발하고, 데이터를 쿼리하는 방법을 배웁니다. 실무형 실습을 통해 Gemini로 소프트웨어 개발 수명 주기(SDLC)가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

이 과정에서는 AI 해석 가능성과 투명성의 개념을 소개합니다. 개발자와 엔지니어에게 AI 투명성이 얼마나 중요한지를 설명합니다. 데이터와 AI 모델 모두에서 해석 가능성과 투명성을 구현하는 데 도움이 되는 실용적인 방법과 도구를 살펴봅니다.

자세히 알아보기

이 과정에서는 책임감 있는 AI라는 개념과 AI 원칙을 소개합니다. 공정성과 편향을 실질적으로 식별하고 AI/ML 실무에서 편향을 완화하는 기법을 알아봅니다. Google Cloud 제품과 오픈소스 도구를 사용하여 책임감 있는 AI 권장사항을 구현하는 실용적인 방법과 도구를 살펴봅니다.

자세히 알아보기

이 과정은 머신러닝 실무자에게 생성형 AI 모델과 예측형 AI 모델을 평가하는 데 필요한 도구, 기술, 권장사항을 제공합니다. 모델 평가는 프로덕션 단계의 ML 시스템이 안정적이고 정확하고 성능이 우수한 결과를 제공할 수 있게 하는 중요한 분야입니다. 강의 참가자는 다양한 평가 측정항목, 방법, 각각 다른 모델 유형과 작업에 적합한 애플리케이션에 대해 깊이 있게 이해할 수 있습니다. 이 과정에서는 생성형 AI 모델의 고유한 문제를 강조하고 이를 효과적으로 해결하기 위한 전략을 소개합니다. 강의 참가자는 Google Cloud의 Vertex AI Platform을 활용해 모델 선택, 최적화, 지속적인 모니터링을 위한 견고한 평가 프로세스를 구현하는 방법을 알아볼 수 있습니다.

자세히 알아보기

이 과정에서는 생성형 AI 모델을 배포하고 관리할 때 MLOps팀이 직면하는 고유한 과제를 파악하는 데 필요한 지식과 도구를 제공하고 Vertex AI가 어떻게 AI팀이 MLOps 프로세스를 간소화하고 생성형 AI 프로젝트에서 성공을 거둘 수 있도록 지원하는지 살펴봅니다.

자세히 알아보기

이 과정에서는 데이터-AI 워크플로를 지원하는 AI 기반 기능 모음인 BigQuery의 Gemini에 관해 살펴봅니다. 이러한 기능에는 데이터 탐색 및 준비, 코드 생성 및 문제 해결, 워크플로 탐색 및 시각화 등이 있습니다. 이 과정은 개념 설명, 실제 사용 사례, 실무형 실습을 통해 데이터 실무자가 생산성을 향상하고 개발 파이프라인의 속도를 높이는 데 도움이 됩니다.

자세히 알아보기

초급 Vertex AI의 프롬프트 설계 기술 배지를 완료하여 Vertex AI 내 프롬프트 엔지니어링, 이미지 분석, 멀티모달 생성형 기술과 관련된 기술 역량을 입증하세요. 효과적인 프롬프트를 만들고 생성형 AI 출력을 안내하며 실제 마케팅 분야 시나리오에 Gemini 모델을 적용하는 방법을 알아보세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

이 과정은 BigQuery에서 생성형 AI 작업에 AI/ML 모델을 사용하는 방법을 보여줍니다. 고객 관계 관리와 관련된 실제 사용 사례를 통해 Gemini 모델로 비즈니스 문제를 해결하는 워크플로를 설명합니다. 이해를 돕기 위해 SQL 쿼리와 Python 노트북을 사용하는 코딩 솔루션을 단계별로 안내합니다.

자세히 알아보기

BigQuery ML을 사용한 추론, 데이터 분석가가 BigQuery ML을 사용해야 하는 이유, 사용 사례, 지원되는 ML 모델을 알아봅니다. BigQuery에서 ML 모델을 만들고 관리하는 방법도 배웁니다.

자세히 알아보기

이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 고객 데이터를 분석하고 제품 판매를 예측하는 데 어떤 도움이 되는지 알아봅니다. BigQuery에서 고객 데이터를 사용해 신규 고객을 식별, 분류, 개발하는 방법도 다룹니다. 실무형 실습을 통해 Gemini로 데이터 분석 및 머신러닝 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기

초급 'Gemini 및 Imagen으로 실제 AI 애플리케이션 빌드하기' 기술 배지 과정을 완료하여, 이미지 인식, 자연어 처리, Google의 강력한 Gemini 및 Imagen 모델을 사용한 이미지 생성, Vertex AI Platform에 애플리케이션 배포 등의 기술을 입증하세요.

자세히 알아보기