In diesem Kurs erfahren Sie, wie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, Sie bei der Nutzung von Google-Produkten und -Diensten zum Entwickeln, Testen, Bereitstellen und Verwalten von Anwendungen unterstützen kann. Sie lernen, wie Sie mit Gemini eine Webanwendung entwickeln und debuggen, Tests entwickeln und Daten abfragen können. In einem praxisorientierten Lab können Sie sich davon überzeugen, wie der Softwareentwicklungs-Lebenszyklus durch Gemini verbessert werden kann. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
Da die Nutzung von künstlicher Intelligenz und Machine Learning in Unternehmen weiter zunimmt, wird auch deren verantwortungsbewusste Entwicklung ein immer wichtigeres Thema. Dabei ist es für viele schwierig, die Überlegungen zur verantwortungsbewussten Anwendung von KI in die Praxis umzusetzen. Wenn Sie wissen möchten, wie sich die verantwortungsbewusste Anwendung von KI in die Praxis umsetzen, also operationalisieren lässt, finden Sie in diesem Kurs entsprechende Hilfestellungen. In diesem Kurs erfahren Sie, wie dies mit Google Cloud heutzutage möglich ist, inklusive entsprechender Best Practices und Erkenntnisse. Es wird gezeigt, welches Framework Google Cloud bietet, um einen eigenen Ansatz für die verantwortungsbewusste Anwendung von KI zu entwickeln.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
In diesem Kurs werden Konzepte in Bezug auf die Interpretierbarkeit und Transparenz von künstlicher Intelligenz vorgestellt. Sie erfahren, warum die Transparenz der KI für Entwickler-Teams wichtig ist. Dabei lernen Sie praktische Techniken und Tools kennen, mit denen Sie sowohl die Interpretierbarkeit als auch die Transparenz von Daten und KI-Modellen optimieren können.
In diesem Kurs werden Konzepte für die verantwortungsbewusste Anwendung von KI und KI-Grundsätze vorgestellt. Es werden Techniken behandelt, wie Sie Fairness und Verzerrung (Bias) in der Praxis erkennen sowie Verzerrung in KI- und ML-Anwendungen reduzieren können. Dabei lernen Sie, wie Sie mit Google Cloud-Produkten und Open-Source-Tools Best Practices für eine verantwortungsbewusste Anwendung von KI umsetzen.
Dieser Kurs gibt Machine-Learning-Anwendern alle grundlegenden Tools, Techniken und Best Practices zur Bewertung von generativen und prädiktiven KI-Modellen an die Hand. Die Modellbewertung ist ein wichtiger Schritt, bei dem geprüft wird, ob ML-Systeme in der Produktion zuverlässige, genaue und leistungsstarke Ergebnisse erzielen. Die Teilnehmer erwerben fundierte Kenntnisse über verschiedene Bewertungsmesswerte und -methoden und lernen, sie auf unterschiedliche Modelltypen und Aufgaben anzuwenden. Im Kurs wird schwerpunktmäßig auf die besonderen Herausforderungen generativer KI-Modelle eingegangen und es werden Strategien vorgestellt, wie sich diese effektiv bewältigen lassen. Die Teilnehmer lernen auf der Plattform Vertex AI von Google Cloud, robuste Bewertungsprozesse zur Auswahl, Optimierung und kontinuierlichen Überwachung des Modells zu implementieren.
Dieser Kurs vermittelt Ihnen das Wissen und die nötigen Tools, um die speziellen Herausforderungen zu erkennen, mit denen MLOps-Teams bei der Bereitstellung und Verwaltung von Modellen basierend auf generativer KI konfrontiert sind. Sie erfahren, wie KI-Teams durch Vertex AI dabei unterstützt werden, MLOps-Prozesse zu optimieren und mit Projekten erfolgreich zu sein, in denen generative KI zum Einsatz kommt.
Dieser Kurs behandelt Gemini in BigQuery, eine Suite KI-gesteuerter Funktionen zur Aufbereitung von Daten für die Verwendung in künstlicher Intelligenz. Zu diesen Funktionen gehören explorative Datenanalyse und ‑aufbereitung, Codegenerierung und Fehlerbehebung sowie Workflow-Erkennung und ‑Visualisierung. Durch konzeptionelle Erläuterungen, einen praxisnahen Anwendungsfall und praktische Übungen können Datenexperten mit diesem Kurs ihre Produktivität steigern und die Entwicklungspipeline beschleunigen.
Mit dem Skill-Logo Prompt-Design mit Vertex AI weisen Sie Grundkenntnisse in folgenden Bereichen nach: Prompt Engineering, Bildanalyse und multimodale generative Techniken in Vertex AI. Entdecken Sie, wie Sie wirksame Prompts erstellen, auf generativer KI basierende Ausgaben steuern und Gemini-Modelle in Marketing-Szenarien aus der Praxis anwenden. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
In diesem Kurs wird gezeigt, wie Sie KI-/ML-Modelle für Aufgaben basierend auf generativer KI in BigQuery verwenden. Anhand eines praktischen Anwendungsfalls zum Customer-Relationship-Management lernen Sie den Workflow zur Lösung eines Geschäftsproblems mit Gemini-Modellen kennen. Zur besseren Nachvollziehbarkeit bietet der Kurs auch eine Schritt-für-Schritt-Anleitung für das Programmieren von Lösungen mithilfe von SQL-Abfragen und Python-Notebooks.
Sie erfahren alles über BigQuery Machine Learning für Inferenzen, warum Datenanalysten es nutzen sollten, Anwendungsfälle und unterstützte ML-Modelle. Sie lernen auch, wie Sie ML-Modelle in BigQuery erstellen und verwalten.
In diesem Kurs erfahren Sie, wie Sie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, bei der Analyse von Kundendaten und der Prognose von Produktverkäufen unterstützen kann. Außerdem lernen Sie, wie Sie mithilfe von Kundendaten in BigQuery Neukunden identifizieren, kategorisieren und gewinnen können. In den praxisorientierten Labs erfahren Sie, wie Gemini Datenanalysen und Workflows für Machine Learning optimiert. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
Mit dem Skill-Logo „Praxisorientierte KI-Anwendungen mit Gemini und Imagen entwickeln“ weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bilderkennung, Natural Language Processing, Bildgenerierung mit den leistungsstarken Gemini- und Imagen-Modellen von Google sowie Bereitstellen von Anwendungen auf der Vertex AI-Plattform.