Dołącz Zaloguj się

Wykorzystuj swoje umiejętności w konsoli Google Cloud

Cavin Karema

Jest członkiem od 2023

Liga brązowa

1600 pkt.
Przygotowywanie danych do użycia z interfejsami ML w Google Cloud Earned cze 10, 2023 EDT
Build a Data Warehouse with BigQuery Earned cze 9, 2023 EDT
Build Batch Data Pipelines on Google Cloud Earned cze 4, 2023 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned cze 1, 2023 EDT

Ukończ szkolenie wprowadzające Przygotowywanie danych do użycia z interfejsami ML w Google Cloud, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: czyszczenie danych przy użyciu usługi Dataprep firmy Trifacta, uruchamianie potoków danych w Dataflow, tworzenie klastrów i uruchamianie zadań Apache Spark w Dataproc, a także wywoływanie interfejsów API dotyczących uczenia maszynowego, w tym Cloud Natural Language API, Google Cloud Speech-to-Text API oraz Video Intelligence API.

Więcej informacji

Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.

Więcej informacji

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Więcej informacji

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Więcej informacji