Maciejak David
メンバー加入日: 2023
ダイヤモンド リーグ
48525 ポイント
メンバー加入日: 2023
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
このコースでは、本番環境で高パフォーマンスな ML システムを構築するためのコンポーネントとベスト プラクティスについて学習します。また、ML システムを構築するうえで最も一般的な考慮事項を紹介します。これには、静的トレーニング、動的トレーニング、静的な推論、動的な推論、分散型 TensorFlow、TPU などが含まれます。このコースでは、優れた予測能力にとどまらない、優れた ML システムの特性を探索することに焦点を当てています。
このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。機械学習エンジニアリングの担当者は、ツールを活用して、デプロイしたモデルの継続的な改善と評価を行います。また、データ サイエンティストと協力して、あるいは自らがデータ サイエンティストとして、最も効果的なモデルを迅速かつ正確にデプロイできるようモデルを開発します。
「Google Cloud での ML の API の使用 」コースを修了して、上級スキルバッジを獲得しましょう。このコースでは、ML と AI テクノロジーを活用する 3 つの API(Cloud Vision API、Cloud Translation API、Cloud Natural Language API) の基本機能について学習します。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了して スキルバッジを獲得し、ネットワークで共有しましょう。
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
このコースでは、本番環境で高パフォーマンスな ML システムを構築するためのコンポーネントとベスト プラクティスについて学習します。また、ML システムを構築するうえで最も一般的な考慮事項を紹介します。これには、静的トレーニング、動的トレーニング、静的な推論、動的な推論、分散型 TensorFlow、TPU などが含まれます。このコースでは、優れた予測能力にとどまらない、優れた ML システムの特性を探索することに焦点を当てています。
Vertex AI での ML ソリューションの構築とデプロイ コースを修了して、 中級スキルバッジを獲得しましょう。このコースでは、Google Cloud の Vertex AI プラットフォーム、AutoML、カスタム トレーニング サービスを使用して、 ML モデルのトレーニング、評価、チューニング、説明、デプロイを行う方法を学びます。 このスキルバッジ コースは、データ サイエンティストと ML エンジニアのプロフェッショナルを 対象としています。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。
このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。機械学習エンジニアリングの担当者は、ツールを活用して、デプロイしたモデルの継続的な改善と評価を行います。また、データ サイエンティストと協力して、あるいは自らがデータ サイエンティストとして、最も効果的なモデルを迅速かつ正確にデプロイできるようモデルを開発します。
ビッグデータ、ML、AI は今日のコンピュータ業界ではホットなトピックですが、 これらの分野は非常に専門性が高く、 入門レベルの教材を見つけるのは困難です。幸いなことに、Google Cloud はこうした分野でユーザー フレンドリーなサービスを提供しており、 この入門レベルのコースを通じて、BigQuery、Cloud Speech API、 Video Intelligence などのツールを使い始めるための第一歩を踏み出せます。
このコースでは、TensorFlow と Keras を使用した ML モデルの構築、ML モデルの精度の向上、スケーリングに対応した ML モデルの作成について取り上げます。
Earn the intermediate skill badge by completing the Classify Images with TensorFlow on Google Cloud course where you will learn how to use TensorFlow and Vertex AI to create and train machine learning models. You will primarily interact with Vertex AI Workbench user-managed notebooks. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Complete the introductory Get Started with Sensitive Data Protection skill badge to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Anthos を使ってみましょう。 この Google Kubernetes Engine 中心のベスト プラクティス ハンズオン ラボ シリーズでは、 GKE 本番環境をデプロイおよび管理する際のセキュリティのスケーリング に焦点を当てます。具体的には、ロールベース アクセス制御、セキュリティ強化、 VPC ネットワーキング、バイナリ承認について学びます。
安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジです。 インタラクティブなハンズオン環境での知識の応用力を証明するものです。スキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。
Google Cloud への CI / CD パイプラインの実装」コースを修了して中級のスキルバッジを獲得しましょう。 Artifact Registry、Cloud Build、Cloud Deploy の使用方法を学習できます。Cloud コンソール、Google Cloud CLI、Cloud Run、GKE を使用します 。このコースでは、継続的インテグレーション(CI) パイプラインの構築、アーティファクトの保存と保護、脆弱性のスキャン、承認されたリリースの有効性の証明 の方法を説明します。さらに、アプリケーションを GKE と Cloud Run の両方にデプロイするという実践的な経験を積むことができます。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、スキルバッジのハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 デジタルバッジを獲得してネットワークで共有しましょう。
Google Cloud での Kubernetes の管理」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 kubectl を活用したデプロイの管理、 Google Kubernetes Engine(GKE)でのアプリケーションのモニタリングとデバッグ、継続的デリバリーの手法におけるスキルを実証できます。 スキルバッジは、 Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。 このスキルバッジ コースと最終評価チャレンジラボを完了し、 デジタルバッジを獲得してネットワークで共有しましょう。
このコースでは、Google Cloud の上級ユーザーを対象に、 Terraform を使用してクラウド リソースを記述し、リリースする方法を説明します。 Terraform は、API を宣言的な構成ファイルにコード化するオープンソースのツールです。 構成ファイルは、チームメンバー間で共有したり、コードとして扱ったりできます。また、編集、レビュー、バージョン管理もできます。これらの ハンズオンラボでは、サンプル テンプレートを使用して、 シンプルなサーバーから、完全にロードバランスされたアプリケーションまで、さまざまな構成をリリースする方法を 学びます。
Kubernetes は最も人気のあるコンテナ オーケストレーション システムであり、Google Kubernetes Engine は特に Google Cloud でマネージド Kubernetes Deployment をサポートするよう 設計されています。この上級レベルのコースでは、 Docker イメージとコンテナを構成し、本格的な Kubernetes Engine アプリケーションをデプロイする実践演習を行います。 また、コンテナ オーケストレーションを独自のワークフローに統合するために必要な 実践的なスキルを学びます。 ハンズオン チャレンジラボを受講して、 スキルを証明し、知識を確認することもできます。このコースの修了後、 Google Cloud での Kubernetes アプリケーションのデプロイコースの 最後にあるチャレンジラボを追加で完了して、Google Cloud の限定デジタルバッジを獲得しましょう。
Get started with Go (Golang) by reviewing Go code, and then creating and deploying simple Go apps on Google Cloud. Go is an open source programming language that makes it easy to build fast, reliable, and efficient software at scale. Go runs native on Google Cloud, and is fully supported on Google Kubernetes Engine, Compute Engine, App Engine, Cloud Run, and Cloud Functions. Go is a compiled language and is faster and more efficient than interpreted languages. As a result, Go requires no installed runtime like Node, Python, or JDK to execute.
「AWS プロフェッショナルのための Google Cloud インフラストラクチャの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、IAM 権限の構成、 Kubernetes を使用したワークロードのオーケストレーション、Compute Engine を使用したウェブ アプリケーションのホスト、 ロード バランシングの構成の各方法について学びます。 スキルバッジは、 Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを完了し、 デジタルバッジを獲得してネットワークで共有しましょう。
「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。 スキルバッジは、ハンズオンラボと課題の評価を通じて特定のプロダクトに関する実践的な知識を証明するものです。コースを修了してバッジを獲得することも、 チャレンジラボに直接挑戦して今すぐバッジを獲得することもできます。バッジは、習熟していることを証明し、 仕事用プロフィールを充実させ、最終的にはキャリアの可能性を広げることにつながります。 プロフィールにアクセスすると、獲得したバッジを確認できます。
Google Cloud Fundamentals for AWS Professionals introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。