가입 로그인

Google Cloud 콘솔에서 기술 적용

Shivprasad Dahiphale

회원 가입일: 2024

골드 리그

12020포인트
Smart Analytics, Machine Learning, and AI on Google Cloud - 한국어 Earned 1월 1, 2025 EST
Google Cloud 기반 복원력이 우수한 스트리밍 분석 시스템 구축하기 Earned 12월 31, 2024 EST
Google Cloud에서 일괄 데이터 파이프라인 빌드하기 Earned 12월 30, 2024 EST
Google Cloud로 데이터 레이크 및 데이터 웨어하우스 현대화하기 Earned 12월 27, 2024 EST
Google Cloud의 데이터 엔지니어링 입문 Earned 12월 22, 2024 EST

머신러닝을 데이터 파이프라인에 통합하면 데이터에서 더 많은 인사이트를 도출할 수 있습니다. 이 과정에서는 머신러닝을 Google Cloud의 데이터 파이프라인에 포함하는 방법을 알아봅니다. 맞춤설정이 거의 또는 전혀 필요 없는 경우에 적합한 AutoML에 대해 알아보고 맞춤형 머신러닝 기능이 필요한 경우를 위해 Notebooks 및 BigQuery 머신러닝(BigQuery ML)도 소개합니다. Vertex AI를 사용해 머신러닝 솔루션을 프로덕션화하는 방법도 다루어 보겠습니다.

자세히 알아보기

스트리밍을 통해 비즈니스 운영에 대한 실시간 측정항목을 얻을 수 있게 되면서 스트리밍 데이터 처리의 사용이 늘고 있습니다. 이 과정에서는 Google Cloud에서 스트리밍 데이터 파이프라인을 빌드하는 방법을 다룹니다. 수신되는 스트리밍 데이터 처리와 관련해 Pub/Sub를 설명합니다. 이 과정에서는 Dataflow를 사용해 집계 및 변환을 스트리밍 데이터에 적용하는 방법과 처리된 레코드를 분석을 위해 BigQuery 또는 Bigtable에 저장하는 방법에 대해서도 다룹니다. Google Cloud에서 Qwiklabs를 사용해 스트리밍 데이터 파이프라인 구성요소를 빌드하는 실습을 진행해 볼 수도 있습니다.

자세히 알아보기

데이터 파이프라인은 일반적으로 추출-로드(EL), 추출-로드-변환(ELT) 또는 추출-변환-로드(ETL) 패러다임 중 하나에 속합니다. 이 과정에서는 일괄 데이터에 사용해야 할 패러다임과 사용 시기에 대해 설명합니다. 또한 BigQuery, Dataproc에서의 Spark 실행, Cloud Data Fusion의 파이프라인 그래프, Dataflow를 사용한 서버리스 데이터 처리 등 데이터 변환을 위한 Google Cloud의 여러 가지 기술을 다룹니다. Google Cloud에서 Qwiklabs를 사용해 데이터 파이프라인 구성요소를 빌드하는 실무형 실습도 진행합니다.

자세히 알아보기

데이터 파이프라인의 두 가지 주요 구성요소는 데이터 레이크와 웨어하우스입니다. 이 과정에서는 스토리지 유형별 사용 사례를 살펴보고 Google Cloud에서 사용 가능한 데이터 레이크 및 웨어하우스 솔루션을 기술적으로 자세히 설명합니다. 또한 데이터 엔지니어의 역할, 성공적인 데이터 파이프라인이 비즈니스 운영에 가져오는 이점, 클라우드 환경에서 데이터 엔지니어링을 수행해야 하는 이유도 알아봅니다. 'Google Cloud의 데이터 엔지니어링' 시리즈의 첫 번째 과정입니다. 이 과정을 완료한 후 'Google Cloud에서 일괄 데이터 파이프라인 빌드하기' 과정에 등록하세요.

자세히 알아보기

이 과정에서는 Google Cloud의 데이터 엔지니어링, 데이터 엔지니어의 역할과 책임, 그리고 이러한 요소가 Google Cloud 제공 서비스와 어떻게 연결되는지에 대해 알아봅니다. 또한 데이터 엔지니어링 과제를 해결하는 방법에 대해서도 배우게 됩니다.

자세히 알아보기