Jihoon Park
成为会员时间:2018
钻石联赛
63940 积分
成为会员时间:2018
Earn an introductory skill badge by completing the Get Started with Google Workspace Tools course, where you will get introduced to Google's collaborative platform and learn to use Gmail, Calendar, Meet, Drive, Sheets, and AppSheet.
Complete the intermediate Manage Kubernetes in Google Cloud skill badge to demonstrate skills in the following: managing deployments with kubectl, monitoring and debugging applications on Google Kubernetes Engine (GKE), and continuous delivery techniques. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
完成中级技能徽章课程使用 Vertex AI 中的 Gemini API 探索生成式 AI,展示自己在以下方面的技能: 文本生成技能、用于增强内容创作能力的图像和视频分析技能,以及在 Gemini API 中应用函数调用技术的技能。 了解如何运用先进的 Gemini 技术、探索多模态内容生成方法,并扩展 AI 赋能项目的功能。
This on-demand course provides partners the skills required to design, deploy, and monitor Vertail AI Search for Commerce solutions including retail search and recommendation AI for enterprise customers.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
In this course, you will learn about the various services Google Cloud offers for modernizing retail applications and infrastructure. Through a series of lecture content and hands-on labs, you will gain practical experience deploying cutting-edge retail and ecommerce solutions on Google Cloud.
完成中级技能徽章课程“使用 BigQuery 实现多模态向量搜索”, 展示自己在以下方面的技能:使用 Gemini in BigQuery 生成和调试 SQL;进行情感分析; 总结文本和识别关键字;生成嵌入;创建 RAG(检索增强生成)流水线; 以及实现多模态向量搜索。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度。 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。 完成此技能徽章课程和作为最终评估的实验室挑战赛, 即可获得数字徽章,在您的人际圈中秀出自己的技能。
完成“使用 Gemini 和 Imagen 构建实际 AI 应用”技能徽章入门课程,展示您在以下方面的技能:图像识别、自然语言处理、 使用 Google 强大的 Gemini 和 Imagen 模型生成图像、在 Vertex AI 平台上部署应用。
本课程探讨 BigQuery 中用于减轻 AI 幻觉的检索增强生成 (RAG) 解决方案。BigQuery 引入了 RAG 工作流,其中涵盖了创建嵌入、搜索向量空间和生成更优质的回答。本课程解释了这些步骤背后的概念原理,以及这些步骤在 BigQuery 中的实际实施过程。学完本课程后,学员将能够使用 BigQuery 和生成式 AI 模型(如 Gemini)以及嵌入模型来构建 RAG 流水线,以解决在具体情况下遇到的 AI 幻觉问题。
在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助工程师管理基础设施。您将了解如何向 Gemini 输入提示,让其查找和理解应用日志、创建 GKE 集群,以及研究如何创建构建环境。您可以通过实操实验了解如何利用 Gemini 来改进 DevOps 工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助您保护您的云环境和资源。您将学习如何将示例工作负载部署到 Google Cloud 环境中,以及如何借助 Gemini 识别和修复安全配置错误。您可以通过实操实验了解如何利用 Gemini 来改善云安全状况。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助网络工程师创建、更新和维护 VPC 网络。您将学习如何向 Gemini 输入提示,让其针对您的网络组建和管理任务,提供您从搜索引擎所无法获得的具体指导。您可以通过实操实验了解如何利用 Gemini 更轻松地使用 Google Cloud VPC 网络。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
在本课程中,您将了解 Gemini(Google Cloud 的生成式 AI 赋能的协作工具)如何帮助管理员预配基础设施。您将了解如何通过输入提示来让 Gemini 解释基础设施、GKE 集群的部署,以及现有基础设施的更新。您可以通过实操实验了解如何利用 Gemini 来改进 GKE 部署工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
在本课程中,您将了解 Google Vids,这是一款面向特定 Google Workspace 用户的在线视频制作与编辑应用。通过课程讲解和演示,您将学习如何在工作中通过视频来制作和讲述引人入胜的故事。您还将了解如何无缝整合媒体、音频和视频片段,自定义风格,并轻松分享您的作品。 Vids 的部分功能借助生成式 AI 来帮助您更高效地进行创作。请注意,包括 Gemini 在内的生成式 AI 工具可能会提供不准确或不恰当的信息。请勿将 Gemini 功能提供的信息作为医疗、法律、财务或其他专业领域的建议。另需注意,Gemini 功能提供的建议不代表 Google 的观点,Google 对此概不负责。
Gemini for Google Workspace 是一个插件,用户可通过它来使用生成式 AI 功能。本课程通过视频课程、实操活动和实际示例,深入探讨了“Google 云端硬盘中的 Gemini”的功能。 学完本课程后,您将掌握相关知识和技能,能够自信地利用 Google 云端硬盘中的 Gemini 来改进工作流。
Google Workspace 专用 Gemini 是一个插件,可为用户提供对生成式 AI 功能的访问权限。本课程深入探讨了“Google Meet 中的 Gemini”的功能。通过视频课程、实操活动和实际示例,您将全面了解 Google Meet 中的 Gemini 功能。您将学习如何使用 Gemini 生成背景图片、提高视频质量以及翻译字幕。学完本课程后,您将掌握相关知识和技能,能够自信地利用 Google Meet 中的 Gemini 尽可能提高视频会议的效率。
Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本迷你课程中,您将了解 Gemini 的主要功能,以及如何在 Google 表格中使用它们来提高工作效率。
Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本迷你课程中,您将了解 Gemini 的主要功能,以及如何在 Google 幻灯片中使用它们来提高工作效率。
Google Workspace 专用 Gemini 是一个插件,用户可通过它来使用生成式 AI 功能。本课程通过视频课程、实操活动和实际示例,深入探讨了“Google 文档中的 Gemini”的功能。您将学习如何使用 Gemini 来根据提示生成书面内容。您还会探索如何使用 Gemini 来修改已撰写好的文本,帮助提升整体工作效率。学完本课程后,您将掌握相关知识和技能,能够自信地利用 Google 文档中的 Gemini 来提升写作水平。
Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本迷你课程中,您将了解 Gemini 的主要功能,以及如何在 Gmail 中使用这些功能来提高工作效率。
Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本学习路线中,您将了解 Gemini 的主要功能,以及如何在 Google Workspace 中使用它们来提高工作效率。
本课程介绍 Google Cloud 中的 AI 和机器学习 (ML) 服务,这些服务可构建预测式和生成式 AI 项目。本课程探讨从数据到 AI 的整个生命周期中可用的技术、产品和工具,包括 AI 基础、开发和解决方案。通过引人入胜的学习体验和实操练习,本课程可帮助数据科学家、AI 开发者和机器学习工程师提升技能和知识水平。
完成在 Vertex AI 上构建和部署机器学习解决方案课程,赢取中级技能徽章。 在此课程中,您将了解如何使用 Google Cloud 的 Vertex AI Platform、AutoML 以及自定义训练服务来 训练、评估、调优、解释和部署机器学习模型。 此技能徽章课程的目标受众是专业的数据科学家和机器学习 工程师。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您对 Google Cloud 产品与服务的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能徽章课程 和作为最终评估的实验室挑战赛,即可获得数字徽章, 在您的人际圈中炫出自己的技能。
Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.
本课程能让机器学习从业者掌握评估生成式和预测式 AI 模型的基本工具、方法和最佳实践。要确保机器学习系统在实际运用中提供可靠、准确、高效的结果,做好模型评估至关重要。 学员将深入了解各项评估指标、方法及如何在不同模型类型和任务中适当应用这些指标和方法。课程将着重介绍生成式 AI 模型带来的独特挑战,并提供有效解决这些挑战的策略。通过利用 Google Cloud 的 Vertex AI Platform,学员可学习如何在模型选择、优化和持续监控工作中实施卓有成效的评估流程。
完成中级技能徽章课程“使用 Gemini 和 Streamlit 开发生成式 AI 应用”,展示您在以下方面的技能: 文本生成、通过 Python SDK 和 Gemini API 应用函数调用,以及通过 Cloud Run 部署 Streamlit 应用。 您将了解如何以不同方式通过提示来让 Gemini 生成文本、使用 Cloud Shell 进行测试,以及如何迭代 Streamlit 应用,随后将其封装成 Docker 容器并部署在 Cloud Run 中。
完成中级技能徽章课程通过 BigQuery ML 创建机器学习模型,展示您在以下方面的技能: 使用 BigQuery ML 创建和评估机器学习模型,以执行数据预测。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛,即可获得技能徽章, 在您的人际圈中炫出自己的技能。
在本课程中,您将学习如何使用 Google 的可移植 UI 工具包 Flutter 来开发应用,并将开发的应用与 Google 的生成式 AI 模型家族 Gemini 相集成。您还将练习使用 Vertex AI Agent Builder,这是 Google 为构建和管理 AI 智能体及应用而提供的平台。
通过使用生成式 AI,提升网站导航体验,从而为您的用户提供更好的搜索体验。在本课程中,您将学习如何通过 Vertex AI Search 为您的网站用户提供生成式搜索体验,使他们能够发现网站提供的内容。作为网站编辑者,您还将学习如何使用生成式 AI 快速且高效地翻译内容,并根据建议对内容进行改进。
生成式 AI 应用可以提供大语言模型 (LLM) 问世前几乎不可能实现的全新用户体验。作为应用开发者,您要如何利用生成式 AI 在 Google Cloud 上构建更具吸引力且功能强大的应用? 在本课程中,您将了解生成式 AI 应用,以及如何利用提示设计和检索增强生成 (RAG) 技术,构建使用 LLM 的强大应用。您将了解可用于生产用途且适合生成式 AI 应用的架构,并构建一个基于 LLM 和 RAG 的聊天应用。
在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助您使用 Google 产品和服务开发、测试、部署和管理应用。在 Gemini 的协助下,您可以学习如何开发和构建 Web 应用、修复应用中的错误、开发测试和查询数据。您可以通过实操实验了解如何利用 Gemini 来改进软件开发生命周期 (SDLC)。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
在本课程中,您将了解 Google Cloud 中依托生成式 AI 技术的协作工具 Gemini 如何帮助开发者构建应用。您将学习如何向 Gemini 输入提示,让其为您解释代码、推荐 Google Cloud 服务并为您的应用生成代码。您将通过实操实验体验 Gemini 对应用开发工作流的改进作用。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
此课程将探索如何使用 AI 功能套件 Gemini in BigQuery 为“数据到 AI”工作流提供助力。其中涉及到的功能包括数据探索和准备、代码生成和问题排查,以及工作流发现和可视化。此课程包含概念解释、真实使用场景以及实操实验等内容,可帮助数据从业者提升效率并加快流水线开发速度。
本课程展示了如何在 BigQuery 中使用 AI/机器学习模型处理生成式 AI 任务。通过一个涉及客户关系管理的实际应用场景,您将学习到使用 Gemini 模型解决业务问题的工作流程。为了便于理解,本课程还将通过使用 SQL 查询和 Python 笔记本的编码解决方案提供分步指导。
了解 BigQuery 机器学习推理功能,以及数据分析师为何应使用该功能,它有哪些应用场景,有哪些受支持的机器学习模型。您还将了解如何在 BigQuery 中创建和管理这些机器学习模型。
在本课程中,您将了解 Gemini(Google Cloud 的生成式 AI 赋能的协作工具)如何帮助分析客户数据并预测产品销售情况。此外,您还将了解如何在 BigQuery 中使用客户数据来识别、开发新客户并对其进行分类。通过动手实验,您将体验 Gemini 如何改进数据分析和机器学习工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。
本课程介绍 AI 隐私保护和安全方面的重要主题,还将探索使用 Google Cloud 产品和开源工具实施建议的 AI 隐私保护和安全实践的实用方法和工具。
本课程介绍了 AI 可解释性和透明度的相关概念,探讨了 AI 透明度对于开发者和工程师的重要性。同时探索了有助于在数据和 AI 模型中实现可解释性和透明度的实用方法及工具。
本课程介绍了 Responsible AI 的概念和 AI 原则,还介绍了在 AI/机器学习实践中识别公平性与偏见以及减少偏见的实用技巧,同时探索了使用 Google Cloud 产品和开源工具来实施 Responsible AI 最佳实践的实用方法和工具。
完成中级技能徽章课程使用多模态 Gemini 和多模态 RAG 检查富文档,展示您在以下方面的技能: 将多模态与 Gemini 配合使用,从而使用多模态提示从文本数据和视觉数据中提取信息、生成视频说明、 检索视频中不包含的额外信息; 将多模态检索增强生成 (RAG) 与 Gemini 配合使用,以构建包含文本和图片的文档的元数据、获取所有相关文本块并输出引用。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度; 您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章, 在您的人际圈中炫出自己的技能。
在本次课程中,探索 AI 赋能的搜索技术、工具和应用。学习利用向量嵌入的语义搜索、融合语义和关键字的混合搜索方法,以及检索增强生成 (RAG) 技术,以打造基于事实的 AI 智能体,尽可能减少 AI 幻觉。获取 Vertex AI Vector Search 实战经验,打造您自己的智能搜索引擎。
本课程介绍 Vertex AI Studio,这是一种用于与生成式 AI 模型交互、围绕业务创意进行原型设计并在生产环境中落地的工具。通过沉浸式应用场景、富有吸引力的课程和实操实验,您将探索从提示到产品的整个生命周期,了解如何将 Vertex AI Studio 用于多模态 Gemini 应用、提示设计、提示工程和模型调优。本课程的目的在于帮助您利用 Vertex AI Studio,在自己的项目中充分发掘生成式 AI 的潜力。
本课程教您如何使用深度学习来创建图片标注模型。您将了解图片标注模型的不同组成部分,例如编码器和解码器,以及如何训练和评估模型。学完本课程,您将能够自行创建图片标注模型并用来生成图片说明。
本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。
本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。
本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。
本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。
随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。
完成 在 Vertex AI 中设计提示入门技能徽章课程,展示以下方面的技能: Vertex AI 中的提示工程、图片分析和多模态生成式技术。探索如何编写有效的提示,指导生成式 AI 输出, 以及将 Gemini 模型应用于真实的营销场景。 技能徽章 是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能 徽章课程和作为最终评估的实验室挑战赛,获得技能徽章, 并在您的社交圈中秀一秀自己的水平。
这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。
这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。
这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。
完成中级技能徽章课程使用 BigQuery 构建数据仓库,展示以下技能: 联接数据以创建新表、排查联接故障、使用并集附加数据、创建日期分区表, 以及在 BigQuery 中使用 JSON、数组和结构体。 技能徽章是 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后 才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛, 获得数字徽章,在您的人际圈中炫出自己的技能。
完成入门级技能徽章课程“从 BigQuery 数据中挖掘数据洞见”,展示您在以下方面的技能: 编写 SQL 查询、查询公共表、将示例数据加载到 BigQuery 中、 在 BigQuery 中使用查询验证器排查常见的语法错误,以及通过连接到 BigQuery 数据在 Looker Studio 中 创建报告。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度。 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章 。完成此技能徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章,在您的人际圈中炫出自己的技能。
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
If you’re looking to take your Google Cloud application to the next level, look no further than Deployment Manager. By automating the creation of GCP resources and services, Deployment Manager lets you focus on developing rather than maintaining. In this advanced-level quest, you will get hands on practice with Deployment Manager by building custom templates, automating Python and Jinja application instances, and scaling custom networks.
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可您在 Google Cloud 产品与服务方面的熟练度; 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章,在您的人际圈中炫出自己的技能。
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
大数据、机器学习和人工智能是当今计算领域的热门话题, 但这些领域的专业性很强,因而很难找到 入门资料。幸运的是,Google Cloud 在这些领域提供了方便用户使用的服务, 通过本入门级课程,您可以 开始学习使用 BigQuery、Cloud Speech API 和 Video Intelligence 等工具。
Containerized applications have changed the game and are here to stay. With Kubernetes, you can orchestrate containers with ease, and integration with the Google Cloud Platform is seamless. In this advanced-level quest, you will be exposed to a wide range of Kubernetes use cases and will get hands-on practice architecting solutions over the course of 8 labs. From building Slackbots with NodeJS, to deploying game servers on clusters, to running the Cloud Vision API, Kubernetes Solutions will show you first-hand how agile and powerful this container orchestration system is.