Ganhe um selo de habilidade ao concluir o curso Introdução às ferramentas do Google Workspace, que apresenta a plataforma colaborativa do Google, e aprenda a usar os apps Gmail, Agenda, Meet, Drive, Planilhas e AppSheet.
Conclua o curso intermediário Gerenciar o Kubernetes no Google Cloud para mostrar que você sabe gerenciar implantações com o kubectl, monitorar e depurar aplicativos no Google Kubernetes Engine (GKE) e aplicar técnicas de entrega contínua. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência em nossos produtos e serviços e testam sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo digital que você pode compartilhar com seus contatos.
Conclua o selo de habilidade intermediário Conheça a IA generativa com a API Gemini na Vertex AI para demonstrar conhecimento nas seguintes atividades: geração de texto, análise de imagens e vídeos para criação de conteúdo aprimorado e aplicação de técnicas de chamada de função na API Gemini. Saiba como aproveitar as técnicas sofisticadas do Gemini, conhecer a geração de conteúdo multimodal e ampliar os recursos dos seus projetos com tecnologia de IA.
This on-demand course provides partners the skills required to design, deploy, and monitor Vertail AI Search for Commerce solutions including retail search and recommendation AI for enterprise customers.
Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.
Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.
In this course, you will learn about the various services Google Cloud offers for modernizing retail applications and infrastructure. Through a series of lecture content and hands-on labs, you will gain practical experience deploying cutting-edge retail and ecommerce solutions on Google Cloud.
Conclua o curso intermediário com selo de habilidade Implementar a pesquisa vetorial multimodal com o BigQuery e demonstre que você sabe usar o Gemini no BigQuery para gerar e depurar SQL, fazer a análise de sentimento, resumir textos, identificar palavras-chave, gerar embeddings, criar um pipeline de geração aumentada de recuperação (RAG) e implementar a pesquisa vetorial multimodal. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência em nossos produtos e serviços e testam sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo digital que você pode compartilhar com seus contatos.
Conclua o treinamento e receba o selo de habilidade introdutório de "Criação de aplicativos de IA no mundo real com o Gemini e o Imagen". Com ele, você vai ser capaz de demonstrar as seguintes competências: reconhecimento de imagens, processamento de linguagem natural, geração de imagens usando os modelos avançados do Gemini e Imagen do Google e implantação de aplicativos na plataforma Vertex AI.
Este curso estuda uma solução de geração aumentada de recuperação (RAG) no BigQuery para mitigar as alucinações da IA. Ele introduz um fluxo de trabalho de RAG que engloba a criação de embeddings, a pesquisa por um espaço vetorial e a geração de respostas aprimoradas. O curso explica os motivos conceituais dessas etapas e a implementação prática delas com o BigQuery. Até o fim do curso, será possível criar um pipeline de RAG usando o BigQuery e modelos de IA generativa como o Gemini, além de modelos de embeddings, para lidar com os próprios casos de uso de alucinação de IA.
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda engenheiros a gerenciar a infraestrutura. Também vai aprender a usar os comandos do Gemini para entender registros de aplicativos, criar um cluster do GKE e descobrir como criar um ambiente de build. O laboratório prático demonstra como o Gemini aprimora o fluxo de trabalho de DevOps. A Duet AI agora é o Gemini, nosso modelo de última geração.
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda a proteger seu ambiente e recursos de nuvem. Você vai aprender a implantar exemplos de cargas de trabalho em um ambiente no Google Cloud, identificar e corrigir configurações incorretas de segurança com o Gemini. No laboratório prático, você vai aprender como o Gemini aprimora sua postura de segurança na nuvem. A Duet AI agora é o Gemini, nosso modelo de última geração.
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda os engenheiros de rede a criar, atualizar e manter redes VPC. Também vai aprender a usar os comandos do Gemini para fornecer orientações específicas para suas tarefas de rede, muito mais detalhadas do que as que você receberia de um mecanismo de pesquisa. O laboratório prático permite que você entenda como o Gemini facilita o trabalho com as redes VPC do Google Cloud. A Duet AI agora é o Gemini, nosso modelo de última geração.
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda administradores a provisionar a infraestrutura. Também vai aprender a usar os comandos do Gemini para explicar e atualizar a infraestrutura, além de implantar clusters do GKE. O laboratório prático permite que você entenda como o Gemini aprimora o fluxo de trabalho de implantação do GKE. A Duet AI agora é o Gemini, nosso modelo de última geração.
Neste curso, você vai conhecer o Google Vids, um app de criação e edição de vídeos on-line que está disponível para alguns usuários do Google Workspace. Com lições e demonstrações, você vai aprender a criar e contar histórias envolventes usando vídeos no trabalho. Também vai descobrir como incorporar mídia, áudio e vídeo, personalizar estilos e compartilhar suas criações. Alguns recursos do Vids usam a IA generativa para ajudar você a trabalhar de forma mais eficiente. As ferramentas de IA generativa, incluindo o Gemini, podem sugerir informações imprecisas ou inadequadas. Não use o Gemini para aconselhamento médico, jurídico, financeiro ou de outra área profissional. Também vale lembrar que as sugestões de recursos do Gemini não representam o ponto de vista do Google e não devem ser atribuídas à empresa.
O Gemini para Google Workspace é um complemento que oferece acesso a recursos de IA generativa. Este curso discute as funcionalidades do Gemini no Google Drive usando aulas em vídeo, atividades e exemplos práticos. Ao final dele, você terá as habilidades e o conhecimento necessários para usar o Gemini no Google Drive e melhorar seus fluxos de trabalho.
O Gemini para Google Workspace é um complemento que oferece acesso a recursos de IA generativa. Este curso apresenta as funcionalidades do Gemini no Google Meet. Com aulas em vídeo, atividades e exemplos práticos, você vai entender a fundo os recursos de IA disponíveis para o Meet. Vamos mostrar como usar o Gemini para gerar imagens de plano de fundo, melhorar a qualidade do vídeo e traduzir legendas. Ao final do curso, você terá o conhecimento e as habilidades para maximizar a eficiência das suas videoconferências no Google Meet usando o Gemini.
O Gemini para Google Workspace é um complemento que oferece aos clientes acesso a recursos de IA generativa na nossa plataforma. Neste minicurso, você vai conhecer as principais funcionalidades do Gemini e como elas podem ser usadas para melhorar a produtividade e a eficiência nas Planilhas Google.
O Gemini para Google Workspace é um complemento que oferece aos clientes acesso a recursos de IA generativa na nossa plataforma. Neste minicurso, você vai conhecer as principais funcionalidades do Gemini e como elas podem ser usadas para melhorar a produtividade e a eficiência nas Apresentações Google.
O Gemini para Google Workspace é um complemento que oferece acesso a recursos de IA generativa. Este curso discute as funcionalidades do Gemini nos Documentos Google usando aulas em vídeo, atividades e exemplos práticos. Você vai aprender a usar o Gemini para gerar conteúdo de texto com base em comandos e vai descobrir como usar o complemento para editar texto já escrito e melhorar sua produtividade. Ao final do curso, você terá as habilidades e o conhecimento necessários para usar o Gemini nos Documentos Google e melhorar sua escrita.
O Gemini para Google Workspace é um complemento que oferece acesso a recursos de IA generativa na plataforma. Neste minicurso, você vai conhecer as principais funcionalidades do Gemini e como elas podem ser usadas para melhorar a produtividade e a eficiência no Gmail.
O Gemini para Google Workspace é um complemento que acrescenta recursos de IA generativa à plataforma. Neste programa de aprendizado, você vai conhecer as principais funcionalidades do Gemini e como elas podem ser usadas para melhorar a produtividade e a eficiência no Google Workspace.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.
Conquiste o selo de habilidade intermediário ao concluir o curso Como criar e implantar soluções de machine learning na Vertex AI. Nele você aprenderá a usar a plataforma Vertex AI, o AutoML e os serviços de treinamento personalizados para treinar, avaliar, ajustar, explicar e implantar modelos de machine learning. Esse curso com selo de habilidade é destinado a cientistas de dados e engenheiros de machine learning. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.
Neste curso, profissionais de machine learning vão conhecer as principais ferramentas, técnicas e práticas recomendadas para avaliar modelos de IA generativa e preditiva. Essa avaliação é muito importante para garantir que os sistemas de ML produzam resultados confiáveis, precisos e de alto desempenho na produção. Os participantes vão entender em detalhes as várias métricas e metodologias de avaliação, além da aplicação correta delas em diferentes tarefas e tipos de modelo. O foco do curso está nos desafios específicos dos modelos de IA generativa e nas estratégias para lidar com eles de forma eficaz. Usando a plataforma Vertex AI do Google Cloud, os participantes vão aprender a implementar processos robustos de avaliação para selecionar e otimizar os modelos, com monitoramento contínuo.
Conclua o selo de habilidade intermediário Desenvolvimento de aplicativos de IA generativa com Gemini e Streamlit para mostrar que você sabe gerar texto, aplicar chamadas de função usando o SDK do Python e a API Gemini e implantar um aplicativo do Streamlit com o Cloud Run. Você vai conhecer formas diferentes de usar comandos no Gemini para gerar texto, usar o Cloud Shell para testar e iterar em um aplicativo do Streamlit e depois colocar o app em um contêiner do Docker implantado no Cloud Run.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Neste curso, você vai aprender a desenvolver um app usando o Flutter, o kit de ferramentas de UI portátil do Google, e a integrar o app com o Gemini, a família de modelos generativos de IA do Google. Você também vai usar o Vertex AI Agent Builder, a plataforma do Google para criar e gerenciar agentes e aplicativos de IA.
Aprimorar a experiência de navegação do seu site com a ajuda da IA generativa para melhorar a experiência de pesquisa dos usuários. Neste curso, você aprenderá a usar a Vertex AI para Pesquisa para disponibilizar aos seus usuários uma experiência de pesquisa generativa que facilita a localização do conteúdo no site. Como responsável pela edição do site, você aprenderá a usar a IA generativa para traduzir e melhorar o conteúdo de forma rápida e eficaz com o uso de sugestões.
Os aplicativos de IA generativa proporcionam novas experiências de usuário que eram quase impossíveis antes da invenção dos modelos de linguagem grandes (LLMs). Ao desenvolver aplicativos, como você pode usar a IA generativa para criar apps potentes e interativos no Google Cloud? Neste curso, você vai conhecer os aplicativos de IA generativa e aprender a usar o design de comandos e a geração aumentada de recuperação (RAG) para criar apps avançados com a ajuda dos LLMs. Você também vai saber o que é a arquitetura pronta para produção, usada nos aplicativos de IA generativa, e vai criar um aplicativo de chat com base em RAG e LLM.
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda você a usar os produtos e serviços do Google para desenvolver, testar, implantar e gerenciar aplicativos. Com a ajuda do Gemini, você vai aprender a desenvolver e criar um aplicativo da Web, corrigir erros no aplicativo, desenvolver testes e consultar dados. No laboratório prático, você aprende como o Gemini aprimora o ciclo de vida do desenvolvimento de software (SDLC, na sigla em inglês) A Duet AI agora é o Gemini, nosso modelo de última geração.
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda desenvolvedores a criar aplicativos. Você também vai aprender a usar os comandos do Gemini para explicar código, recomendar serviços do Google Cloud e gerar código para seus aplicativos. No laboratório prático, você vai entender como o Gemini melhora o fluxo de trabalho de implantação de aplicativos. A Duet AI agora é o Gemini, nosso modelo de última geração.
Neste curso, vamos conhecer o Gemini no BigQuery, um pacote de recursos com tecnologia de IA que auxilia no fluxo de trabalho de dados para inteligência artificial. Esses recursos incluem preparação e análise detalhada de dados, solução de problemas e geração de código, além da descoberta e visualização do fluxo de trabalho. Com explicações conceituais, um caso de uso prático e o laboratório, o curso ensina aos profissionais de dados como aumentar a produtividade e acelerar o pipeline de desenvolvimento.
Este curso demonstra como usar modelos de ML/IA para tarefas generativas no BigQuery. Nele, você vai conhecer o fluxo de trabalho para solucionar um problema comercial com modelos do Gemini utilizando um caso de uso prático que envolve gestão de relacionamento com o cliente. Para facilitar a compreensão, o curso também proporciona instruções detalhadas de soluções de programação que usam consultas SQL e notebooks Python.
Conheça o BigQuery ML para inferência, saiba por que ele é a melhor opção para analistas de dados, os casos de uso dele e os modelos de ML compatíveis. Você também vai aprender a criar e gerenciar esses modelos de ML no BigQuery.
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda a analisar os dados dos clientes e a prever as vendas de produtos. Além disso, você vai aprender a identificar, categorizar e desenvolver novos clientes usando seus dados no BigQuery. Usando laboratórios práticos, você vai descobrir como o Gemini melhora a análise de dados e os fluxos de trabalho de machine learning. A Duet AI agora é o Gemini, nosso modelo de última geração.
O objetivo desse curso é equipar você com o conhecimento e as ferramentas necessários para resolver os desafios enfrentados por equipes de MLOps durante o desenvolvimento e gerenciamento de modelos de IA generativa. Também queremos mostrar como a Vertex AI ajuda equipes de IA a simplificar processos de MLOps e a alcançar o sucesso em projetos de IA generativa.
Este curso apresenta tópicos importantes sobre privacidade e segurança da IA. Ele também aborda recursos e métodos úteis para implementar práticas recomendadas de privacidade e segurança da IA com o uso de produtos do Google Cloud e ferramentas de código aberto.
Neste curso, apresentamos os conceitos de interpretabilidade e transparência em IA. Vamos abordar a importância da transparência em IA para desenvolvedores e engenheiros. O curso também abrange ferramentas e métodos práticos para ajudar a alcançar a interpretabilidade e a transparência em dados e modelos de IA.
Neste curso, apresentamos conceitos de IA responsável e princípios de IA. Ele contém técnicas para identificar e reduzir o viés e aplicar a imparcialidade nas práticas de ML/IA. Vamos abordar ferramentas e métodos práticos para implementar as práticas recomendadas de IA responsável usando produtos do Google Cloud e ferramentas de código aberto.
Conclua o curso intermediário para obter o selo de habilidade Inspecione documentos avançados usando a multimodalidade do Gemini e o RAG multimodal e demonstrar suas habilidades em: usar comandos multimodais para extrair informações de dados textuais e visuais, gerar uma descrição de vídeo e recuperar mais informações além das que aparecem no vídeo usando a multimodalidade do Gemini; criar metadados de documentos com textos e imagens, acessar todos os blocos de texto relevantes e imprimir citações usando a Geração Aumentada de Recuperação (RAG, na sigla em inglês) multimodal com o Gemini. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado no seu currículo e…
Conheça aplicativos, ferramentas e tecnologias de pesquisa com tecnologia de IA neste curso. Aprenda a fazer pesquisa semântica usando embeddings de vetores, pesquisa híbrida combinando abordagens semânticas e por palavras-chave, e geração aumentada por recuperação (RAG), minimizando as alucinações artificiais da IA como um agente de IA embasado. Ganhe experiência prática com a pesquisa vetorial da Vertex AI para criar um mecanismo de pesquisa inteligente.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.
Neste curso, ensinamos a criar um modelo de legenda para imagens usando aprendizado profundo. Você vai aprender sobre os diferentes componentes de um modelo de legenda para imagens, como o codificador e decodificador, e de que forma treinar e avaliar seu modelo. Ao final deste curso, você será capaz de criar e usar seus próprios modelos de legenda para imagens.
Este curso é uma introdução à arquitetura de transformador e ao modelo de Bidirectional Encoder Representations from Transformers (BERT, na sigla em inglês). Você vai aprender sobre os principais componentes da arquitetura de transformador, como o mecanismo de autoatenção, e como eles são usados para construir o modelo de BERT. Também vai conhecer as diferentes tarefas onde é possível usar o BERT, como classificação de texto, respostas a perguntas e inferência de linguagem natural. O curso leva aproximadamente 45 minutos.
Este curso apresenta um resumo da arquitetura de codificador-decodificador, que é uma arquitetura de machine learning avançada e frequentemente usada para tarefas sequência para sequência (como tradução automática, resumo de textos e respostas a perguntas). Você vai conhecer os principais componentes da arquitetura de codificador-decodificador e aprender a treinar e disponibilizar esses modelos. No tutorial do laboratório relacionado, você vai codificar uma implementação simples da arquitetura de codificador-decodificador para geração de poesia desde a etapa inicial no TensorFlow.
Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.
Conclua o curso introdutório Criação de comandos na Vertex AI para: Demonstrar suas habilidades nas áreas de engenharia de comandos, análise de imagens e técnicas generativas multimodais na Vertex AI Descobrir como criar comandos eficientes, guiar as respostas da IA generativa e aplicar os modelos do Gemini em cenários reais de marketing Os selos de habilidade são digitais, exclusivos e emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e comprovar sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
Conclua o selo de habilidade intermediário Criar um data warehouse com o BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber uma certificação digital que você pode compartilhar com seus contatos.
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Quer criar ou otimizar um armazenamento de dados? Aprenda práticas recomendadas para extrair, transformar e carregar dados no Google Cloud com o BigQuery. Nesta série de laboratórios interativos, você vai criar e otimizar seu próprio armazenamento usando diversos conjuntos de dados públicos de grande escala do BigQuery. O BigQuery é um banco de dados de análise NoOps, totalmente gerenciado e de baixo custo desenvolvido pelo Google. Com ele, você pode consultar muitos terabytes de dados sem ter que gerenciar uma infraestrutura ou precisar de um administrador de banco de dados. O BigQuery usa SQL e está disponível no modelo de pagamento por utilização. Com ele, você se concentra na análise dos dados para encontrar insights relevantes.
If you’re looking to take your Google Cloud application to the next level, look no further than Deployment Manager. By automating the creation of GCP resources and services, Deployment Manager lets you focus on developing rather than maintaining. In this advanced-level quest, you will get hands on practice with Deployment Manager by building custom templates, automating Python and Jinja application instances, and scaling custom networks.
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
Este curso de nível introdutório mostra aos desenvolvedores de aplicativos como o ecossistema do Google Cloud facilita a criação de apps nativos da nuvem seguros, escalonáveis e inteligentes. Você vai aprender a desenvolver e escalonar aplicativos sem configurar uma infraestrutura, além de executar análises de dados, extrair insights dos dados e usar APIs de ML pré-treinadas para aproveitar os recursos de machine learning, mesmo se não for especialista no assunto. Também vamos mostrar como vários serviços do Google se integram perfeitamente a APIs para criar apps inteligentes.
Usar a capacidade de computação em grande escala para reconhecer padrões e "ler" imagens é uma das tecnologias fundamentais de IA, desde carros com condução automática até reconhecimento facial. O Google Cloud Platform oferece velocidade e precisão de nível internacional, com sistemas que podem ser usados ao chamar APIs. Com eles e várias outras APIs, o GCP tem praticamente uma ferramenta para cada job de machine learning. Neste curso introdutório, você vai praticar a aplicação do machine learning em processamento de imagens com laboratórios que permitem rotular imagens, detectar rostos e pontos de referência, extrair, analisar e traduzir texto de imagens.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
Big Data, machine learning e inteligência artificial são áreas da computação que estão em alta. Mas esses são campos muito especializados, e é difícil encontrar materiais introdutórios sobre eles. Felizmente, o Google Cloud oferece serviços fáceis de usar nessas áreas, e com este curso de nível básico, você já pode começar sua jornada com ferramentas como o BigQuery, a API Cloud Speech e o Video Intelligence.
Containerized applications have changed the game and are here to stay. With Kubernetes, you can orchestrate containers with ease, and integration with the Google Cloud Platform is seamless. In this advanced-level quest, you will be exposed to a wide range of Kubernetes use cases and will get hands-on practice architecting solutions over the course of 8 labs. From building Slackbots with NodeJS, to deploying game servers on clusters, to running the Cloud Vision API, Kubernetes Solutions will show you first-hand how agile and powerful this container orchestration system is.