가입 로그인

Google Cloud 콘솔에서 기술 적용

Armand Nana Simo

회원 가입일: 2023

골드 리그

24205포인트
Deploying SAP on Google Cloud Earned 2월 1, 2024 EST
Google Cloud 기반 데이터 분석 입문 Earned 12월 22, 2023 EST
생성형 AI 소개 Earned 12월 12, 2023 EST
Preparing for your Professional Data Engineer Journey Earned 10월 31, 2023 EDT
Applying Advanced LookML Concepts in Looker Earned 10월 27, 2023 EDT
Understanding LookML in Looker Earned 10월 27, 2023 EDT
Looker 대시보드 및 보고서를 위해 데이터 준비하기 Earned 10월 26, 2023 EDT
Analyzing and Visualizing Data in Looker Earned 10월 26, 2023 EDT
BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 Earned 10월 25, 2023 EDT
Developing Data Models with LookML Earned 10월 24, 2023 EDT
BigQuery로 데이터 웨어하우스 빌드 Earned 10월 22, 2023 EDT
Serverless Data Processing with Dataflow: Foundations Earned 10월 20, 2023 EDT
Google Cloud 기반 복원력이 우수한 스트리밍 분석 시스템 구축하기 Earned 10월 19, 2023 EDT
Google Cloud에서 일괄 데이터 파이프라인 빌드하기 Earned 10월 13, 2023 EDT
Google Cloud로 데이터 레이크 및 데이터 웨어하우스 현대화하기 Earned 9월 29, 2023 EDT

This course provides a holistic experience of optimally configuring SAP on Google Cloud. Participants will learn to configure SAP on Google Cloud, and what best practices are, leaving the course with actionable experience to configure SAP on Google Cloud and run SAP workloads on Google Cloud.

자세히 알아보기

초급 과정에서는 Google Cloud에서 데이터 분석 워크플로와 데이터를 탐색, 분석, 시각화하여 이해관계자와 결과물을 공유하는 데 활용할 수 있는 도구에 대해 학습합니다. 이 과정에서는 우수사례를 실무형 실습, 강의, 퀴즈/데모와 함께 활용해 원시 데이터 세트에서 데이터를 정리하여 효과적인 시각화 및 대시보드를 만드는 방법을 설명합니다. 이미 데이터를 활용하고 있고 Google Cloud를 효과적으로 활용하는 방법을 알고 싶거나 경력을 발전시키고 싶은 학습자라면 이 과정으로 학습을 시작해 보세요. 업무에서 데이터 분석을 수행하거나 활용하는 거의 모든 학습자에게 도움이 될 수 있습니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

자세히 알아보기

In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.

자세히 알아보기

In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.

자세히 알아보기

초급 Looker 대시보드 및 보고서를 위해 데이터 준비하기 기술 배지 과정을 완료하면 데이터를 필터링, 정렬, 피벗팅하고, 다른 Looker Explore의 결과를 병합하고, 함수 및 연산자를 사용해 데이터 분석 및 시각화를 위한 Looker 대시보드 및 보고서를 빌드하는 기술 역량을 입증할 수 있습니다.

자세히 알아보기

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

자세히 알아보기

중급 BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 기술 배지를 획득하여 Dataprep by Trifact로 데이터 변환 파이프라인을 BigQuery에 빌드, Cloud Storage, Dataflow, BigQuery를 사용한 ETL(추출, 변환, 로드) 워크플로 빌드, BigQuery ML을 사용하여 머신러닝 모델을 빌드하는 기술 역량을 입증할 수 있습니다.

자세히 알아보기

This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.

자세히 알아보기

중급 BigQuery로 데이터 웨어하우스 빌드 기술 배지를 완료하여 데이터를 조인하여 새 테이블 만들기, 조인 관련 문제 해결, 합집합으로 데이터 추가, 날짜로 파티션을 나눈 테이블 만들기, BigQuery에서 JSON, 배열, 구조체 작업하기와 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 대화형 실습 환경을 통해 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

자세히 알아보기

스트리밍을 통해 비즈니스 운영에 대한 실시간 측정항목을 얻을 수 있게 되면서 스트리밍 데이터 처리의 사용이 늘고 있습니다. 이 과정에서는 Google Cloud에서 스트리밍 데이터 파이프라인을 빌드하는 방법을 다룹니다. 수신되는 스트리밍 데이터 처리와 관련해 Pub/Sub를 설명합니다. 이 과정에서는 Dataflow를 사용해 집계 및 변환을 스트리밍 데이터에 적용하는 방법과 처리된 레코드를 분석을 위해 BigQuery 또는 Bigtable에 저장하는 방법에 대해서도 다룹니다. Google Cloud에서 Qwiklabs를 사용해 스트리밍 데이터 파이프라인 구성요소를 빌드하는 실습을 진행해 볼 수도 있습니다.

자세히 알아보기

데이터 파이프라인은 일반적으로 추출-로드(EL), 추출-로드-변환(ELT) 또는 추출-변환-로드(ETL) 패러다임 중 하나에 속합니다. 이 과정에서는 일괄 데이터에 사용해야 할 패러다임과 사용 시기에 대해 설명합니다. 또한 BigQuery, Dataproc에서의 Spark 실행, Cloud Data Fusion의 파이프라인 그래프, Dataflow를 사용한 서버리스 데이터 처리 등 데이터 변환을 위한 Google Cloud의 여러 가지 기술을 다룹니다. Google Cloud에서 Qwiklabs를 사용해 데이터 파이프라인 구성요소를 빌드하는 실무형 실습도 진행합니다.

자세히 알아보기

데이터 파이프라인의 두 가지 주요 구성요소는 데이터 레이크와 웨어하우스입니다. 이 과정에서는 스토리지 유형별 사용 사례를 살펴보고 Google Cloud에서 사용 가능한 데이터 레이크 및 웨어하우스 솔루션을 기술적으로 자세히 설명합니다. 또한 데이터 엔지니어의 역할, 성공적인 데이터 파이프라인이 비즈니스 운영에 가져오는 이점, 클라우드 환경에서 데이터 엔지니어링을 수행해야 하는 이유도 알아봅니다. 'Google Cloud의 데이터 엔지니어링' 시리즈의 첫 번째 과정입니다. 이 과정을 완료한 후 'Google Cloud에서 일괄 데이터 파이프라인 빌드하기' 과정에 등록하세요.

자세히 알아보기