Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Armand Nana Simo

Date d'abonnement : 2023

Ligue d'Or

24205 points
Deploying SAP on Google Cloud Earned fév. 1, 2024 EST
Introduction à l'analyse de données sur Google Cloud Earned déc. 22, 2023 EST
Présentation de l'IA générative Earned déc. 12, 2023 EST
Se préparer à devenir Professional Data Engineer Earned oct. 31, 2023 EDT
Applying Advanced LookML Concepts in Looker Earned oct. 27, 2023 EDT
Understanding LookML in Looker Earned oct. 27, 2023 EDT
Préparer les données à utiliser pour les tableaux de bord et rapports Looker Earned oct. 26, 2023 EDT
Analyzing and Visualizing Data in Looker Earned oct. 26, 2023 EDT
Ingénierie des données pour la modélisation prédictive avec BigQuery ML Earned oct. 25, 2023 EDT
Developing Data Models with LookML Earned oct. 24, 2023 EDT
Créer un entrepôt de données avec BigQuery Earned oct. 22, 2023 EDT
Traitement des données sans serveur avec Dataflow : principes de base Earned oct. 20, 2023 EDT
Concevoir des systèmes d'analyse de flux résilients sur Google Cloud Earned oct. 19, 2023 EDT
Créer des pipelines de données en batch sur Google Cloud Earned oct. 13, 2023 EDT
Moderniser des lacs de données et des entrepôts de données avec Google Cloud Earned sept. 29, 2023 EDT

This course provides a holistic experience of optimally configuring SAP on Google Cloud. Participants will learn to configure SAP on Google Cloud, and what best practices are, leaving the course with actionable experience to configure SAP on Google Cloud and run SAP workloads on Google Cloud.

En savoir plus

Dans ce cours de niveau débutant, vous découvrirez le workflow d'analyse de données sur Google Cloud, ainsi que les outils que vous pouvez utiliser pour explorer, analyser et visualiser les données, et partager vos observations avec les personnes concernées. Grâce à une étude de cas, des ateliers pratiques, des leçons et des quiz/démos, ce cours vous montrera comment transformer des ensembles de données bruts en données exploitables dans des visualisations et des tableaux de bord percutants. Que vous travailliez déjà avec des données et souhaitiez apprendre à mettre Google Cloud pleinement à profit ou que vous cherchiez à progresser dans votre carrière, ce cours vous sera utile. La plupart des personnes qui effectuent ou utilisent des analyses de données dans leur travail en tireront des enseignements.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours a pour objectif d'aider les participants à créer un plan de formation pour l'examen de certification Professional Data Engineer. Les participants découvriront l'étendue et le champ d'application des domaines abordés lors de l'examen, puis évalueront leur niveau de préparation à l'examen et créeront leur propre plan de formation.

En savoir plus

In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.

En savoir plus

In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.

En savoir plus

Terminez le cours d'introduction Préparer les données à utiliser pour les tableaux de bord et rapports Looker pour recevoir un badge démontrant vos compétences dans les domaines suivants : le filtrage, le tri et le croisement de données ; la fusion des résultats de différentes explorations Looker ; et l'utilisation de fonctions et d'opérateurs pour créer des tableaux de bord et des rapports Looker en vue de l'analyse et de la visualisation des données.

En savoir plus

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

En savoir plus

Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.

En savoir plus

This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.

En savoir plus

Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge

En savoir plus

Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.

En savoir plus

Le traitement de flux de données est une pratique de plus en plus courante, car elle permet aux entreprises d'obtenir des métriques sur leurs activités commerciales en temps réel. Ce cours explique comment créer des pipelines de flux de données sur Google Cloud et présente Pub/Sub, une solution qui permet de gérer des données de flux entrants. Par ailleurs, vous verrez comment appliquer des agrégations et des transformations à des flux de données à l'aide de Dataflow, mais aussi comment stocker des enregistrements traités dans BigQuery ou Bigtable pour qu'ils puissent être analysés. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de flux de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Les pipelines de données s'inscrivent généralement dans l'un des paradigmes EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours indique quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il présente également plusieurs technologies Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".

En savoir plus