matthew mclaughlin
Participante desde 2023
Liga Ouro
43095 pontos
Participante desde 2023
Neste curso, você vai conhecer o Google Vids, um app de criação e edição de vídeos on-line que está disponível para alguns usuários do Google Workspace. Com lições e demonstrações, você vai aprender a criar e contar histórias envolventes usando vídeos no trabalho. Também vai descobrir como incorporar mídia, áudio e vídeo, personalizar estilos e compartilhar suas criações. Alguns recursos do Vids usam a IA generativa para ajudar você a trabalhar de forma mais eficiente. As ferramentas de IA generativa, incluindo o Gemini, podem sugerir informações imprecisas ou inadequadas. Não use o Gemini para aconselhamento médico, jurídico, financeiro ou de outra área profissional. Também vale lembrar que as sugestões de recursos do Gemini não representam o ponto de vista do Google e não devem ser atribuídas à empresa.
O Gemini para Google Workspace é um complemento que oferece acesso a recursos de IA generativa. Este curso discute as funcionalidades do Gemini no Google Drive usando aulas em vídeo, atividades e exemplos práticos. Ao final dele, você terá as habilidades e o conhecimento necessários para usar o Gemini no Google Drive e melhorar seus fluxos de trabalho.
O Gemini para Google Workspace é um complemento que oferece acesso a recursos de IA generativa. Este curso apresenta as funcionalidades do Gemini no Google Meet. Com aulas em vídeo, atividades e exemplos práticos, você vai entender a fundo os recursos de IA disponíveis para o Meet. Vamos mostrar como usar o Gemini para gerar imagens de plano de fundo, melhorar a qualidade do vídeo e traduzir legendas. Ao final do curso, você terá o conhecimento e as habilidades para maximizar a eficiência das suas videoconferências no Google Meet usando o Gemini.
O Gemini para Google Workspace é um complemento que oferece aos clientes acesso a recursos de IA generativa na nossa plataforma. Neste minicurso, você vai conhecer as principais funcionalidades do Gemini e como elas podem ser usadas para melhorar a produtividade e a eficiência nas Planilhas Google.
O Gemini para Google Workspace é um complemento que oferece aos clientes acesso a recursos de IA generativa na nossa plataforma. Neste minicurso, você vai conhecer as principais funcionalidades do Gemini e como elas podem ser usadas para melhorar a produtividade e a eficiência nas Apresentações Google.
O Gemini para Google Workspace é um complemento que oferece acesso a recursos de IA generativa. Este curso discute as funcionalidades do Gemini nos Documentos Google usando aulas em vídeo, atividades e exemplos práticos. Você vai aprender a usar o Gemini para gerar conteúdo de texto com base em comandos e vai descobrir como usar o complemento para editar texto já escrito e melhorar sua produtividade. Ao final do curso, você terá as habilidades e o conhecimento necessários para usar o Gemini nos Documentos Google e melhorar sua escrita.
O Gemini para Google Workspace é um complemento que oferece acesso a recursos de IA generativa na plataforma. Neste minicurso, você vai conhecer as principais funcionalidades do Gemini e como elas podem ser usadas para melhorar a produtividade e a eficiência no Gmail.
O Gemini para Google Workspace é um complemento que acrescenta recursos de IA generativa à plataforma. Neste programa de aprendizado, você vai conhecer as principais funcionalidades do Gemini e como elas podem ser usadas para melhorar a produtividade e a eficiência no Google Workspace.
Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Este é o segundo dos cinco cursos do Certificado Google Cloud Data Analytics. O assunto deste curso é a estruturação e a organização dos dados. Você vai adquirir experiência prática com a arquitetura de data lakehouse e os componentes de nuvem como o BigQuery, o Google Cloud Storage e o DataProc, usados para armazenar, analisar e processar grandes conjuntos de dados.
Conquiste um selo de habilidade ao concluir o curso Como criar uma rede segura do Google Cloud, que apresenta vários recursos relacionados a redes para criar, escalonar e proteger seus aplicativos no Google Cloud.
Conquiste um selo de habilidade ao concluir o curso Como configurar um ambiente de desenvolvimento de apps no Google Cloud. Nele, você aprende a criar e conectar uma infraestrutura em nuvem focada em armazenamento usando recursos básicos das seguintes tecnologias: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub.
Conquiste o selo de habilidade Implementar o balanceamento de carga no Compute Engine para demonstrar que você é capaz de: escrever comandos gcloud, usar o Cloud Shell, criar e implantar máquinas virtuais no Compute Engine e configurar balanceadores de carga HTTP e de rede. Um selo de habilidade é um selo digital exclusivo emitido pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Complete esse curso e o laboratório com desafio da avaliação final para receber o selo de habilidade que pode ser compartilhado com seus contatos.
Os cursos da Google Cloud Computing Foundations são direcionados para pessoas com pouca ou nenhuma formação ou experiência na área de computação em nuvem. Eles apresentam uma visão geral dos principais conceitos de nuvem, Big Data e machine learning, além de explicar onde e como usar o Google Cloud. Ao final da série de cursos, os alunos serão capazes de articular estes conceitos e demonstrar algumas habilidades práticas. Conclua os cursos na seguinte ordem: 1. Fundamentos da computação do Google Cloud: noções básicas da computação em nuvem 2. Fundamentos da computação do Google Cloud: infraestrutura no Google Cloud 3. Fundamentos da computação do Google Cloud: rede e segurança no Google Cloud 4. Fundamentos da computação do Google Cloud: dados, ML e IA no Google Cloud Este curso final da série analisa os serviços gerenciados de Big Data, machine learning e os benefícios dela, e como comprovar suas habilidades no Google Cloud ganhando selos de habilidade.
Os cursos da Google Cloud Computing Foundations são direcionados para pessoas com pouca ou nenhuma formação ou experiência na área de computação em nuvem. Eles apresentam uma visão geral dos principais conceitos de nuvem, Big Data e machine learning, além de explicar onde e como usar o Google Cloud. Ao final da série de cursos, os alunos serão capazes de articular estes conceitos e demonstrar algumas habilidades práticas. Conclua os cursos na seguinte ordem: 1. Fundamentos da computação do Google Cloud: noções básicas da computação em nuvem 2. Fundamentos da computação do Google Cloud: infraestrutura no Google Cloud 3. Fundamentos da computação do Google Cloud: rede e segurança no Google Cloud 4. Fundamentos da computação do Google Cloud: dados, ML e IA no Google Cloud Este terceiro curso abrange as ferramentas de automação e gerenciamento de nuvem e como criar redes seguras.
Os cursos da série Google Cloud Computing Foundations são direcionados a pessoas com pouca ou nenhuma formação ou experiência na área de computação em nuvem. Eles apresentam uma visão geral dos principais conceitos de nuvem, Big Data e machine learning, e o papel do Google Cloud no uso dessas tecnologias Ao final da série, os alunos saberão articular esses conceitos e demonstrar algumas habilidades práticas. Você precisa concluir os cursos na seguinte ordem: 1. Fundamentos da computação do Google Cloud: noções básicas da computação em nuvem 2. Fundamentos da computação do Google Cloud: infraestrutura no Google Cloud 3. Fundamentos da computação do Google Cloud: rede e segurança no Google Cloud 4. Fundamentos da computação do Google Cloud: dados, ML e IA no Google Cloud
Os cursos da Google Cloud Computing Foundations são direcionados para pessoas com pouca ou nenhuma formação ou experiência na área de computação em nuvem. Eles apresentam uma visão geral dos principais conceitos de nuvem, Big Data e machine learning, além de explicar onde e como usar o Google Cloud. Ao final da série de cursos, os alunos serão capazes de articular estes conceitos e demonstrar algumas habilidades práticas. Conclua os cursos na seguinte ordem: 1. Fundamentos da computação do Google Cloud: noções básicas da computação em nuvem 2. Fundamentos da computação do Google Cloud: infraestrutura no Google Cloud 3. Fundamentos da computação do Google Cloud: rede e segurança no Google Cloud 4. Fundamentos da computação do Google Cloud: dados, ML e IA no Google Cloud Este primeiro curso apresenta uma visão geral da computação em nuvem, formas de usar o Google Cloud e as diferentes opções de computação.
Este é o quarto de cinco cursos para o Certificado Google Cloud Data Analytics. Neste curso, você vai desenvolver habilidades nos cinco estágios principais da visualização de dados na nuvem: narrativa, planejamento, análise de dados, criação de visualizações e compartilhamento dos dados com outras pessoas. Você também vai adquirir experiência em atividades de UI/UX para criar visualizações impactantes e nativas da nuvem, além de trabalhar com ferramentas de visualização de dados para analisar conjuntos de dados, elaborar relatórios e criar painéis que auxiliam nas decisões e promovem a colaboração.
Este é o último dos cinco cursos do Certificado Google Cloud Data Analytics. Neste curso, você vai combinar e aplicar o conhecimento e as habilidades básicas dos cursos anteriores em um projeto final focado em todo o ciclo de vida dos dados. Você também vai praticar o uso de ferramentas baseadas na nuvem para adquirir, armazenar, processar, analisar, visualizar e comunicar insights de dados de maneira eficaz. No final do curso, você terá concluído um projeto demonstrando sua proficiência em estruturar dados de várias fontes de maneira eficiente, oferecer soluções para outras partes interessadas e visualizar insights de dados usando um software com base na nuvem. Você também vai atualizar seu currículo e praticar técnicas que ajudam a preparar você para se candidatar e passar por entrevistas de emprego.
Este é o terceiro de cinco cursos para o Certificado Google Cloud Data Analytics. Nele, você vai começar com uma visão geral da jornada dos dados, desde a coleta até os insights. Você vai aprender a usar o SQL para converter dados brutos para um formato usável. Depois vai saber como transformar grandes volumes de dados com um pipeline de dados. Por último, você vai ganhar experiência aplicando estratégias de transformação em conjuntos de dados reais para atender necessidades comerciais.
Este é o primeiro dos cinco cursos do Certificado Google Cloud Data Analytics. Neste curso, vamos definir o campo da análise de dados em nuvem e descrever as funções e responsabilidades de um analista de dados em nuvem relacionadas à aquisição, visualização de dados, ao armazenamento e processamento. Você vai conhecer a arquitetura das ferramentas baseadas no Google Cloud, como BigQuery e Cloud Storage, e descobrir como são usadas para estruturar, apresentar e relatar dados de maneira eficaz.
Este curso ajuda você a se preparar para o exame Associate Cloud Engineer. Você vai aprender sobre os domínios do Google Cloud abordados no exame e como criar um plano de estudos para melhorar seu conhecimento sobre o assunto.
Organizações de vários portes estão adotando a tecnologia e a flexibilidade da nuvem para transformar a forma como operam. No entanto, gerenciar e escalonar recursos na nuvem de maneira eficaz é uma tarefa complexa. O curso Escalonamento com as Operações do Google Cloud traz noções básicas de confiabilidade, resiliência e operações modernas na nuvem, explicando como o Google Cloud pode ajudar nesses esforços. Como parte do programa de aprendizado do Líder digital do Cloud, o objetivo deste curso é ajudar você a crescer profissionalmente e desenvolver o futuro do seu próprio negócio.
A inteligência artificial (IA) e o machine learning (ML) representam importantes evoluções na tecnologia da informação que estão transformando uma ampla variedade de setores. O curso "Como inovar com a inteligência artificial do Google Cloud" mostra como as organizações podem usar a IA e o ML para transformar processos comerciais. Como parte do programa de aprendizado do Líder digital do Cloud, o objetivo deste curso é ajudar você a crescer profissionalmente e desenvolver o futuro do seu próprio negócio.
As pessoas estão muito animadas com a tecnologia de nuvem e a transformação digital, mas também ainda têm muitas dúvidas. Exemplo: O que é a tecnologia de nuvem? O que significa transformação digital? Como a tecnologia de nuvem pode ajudar sua organização? Por onde começar? Se você já se questionou sobre isso, veio ao lugar certo. Este curso fornece uma visão geral dos tipos de oportunidades e desafios que as empresas encaram em suas jornadas de transformação digital. Se quiser saber mais sobre tecnologia de nuvem para se destacar no trabalho e ajudar a construir o futuro da sua empresa, este curso introdutório sobre transformação digital é para você. Este curso faz parte do programa de aprendizado do Líder digital do Cloud.
Conforme as organizações movem os próprios dados e aplicativos para a nuvem, novos problemas de segurança podem aparecer. No curso Confiança e segurança com o Google Cloud, explicamos os conceitos básicos de segurança na nuvem, o valor da abordagem multicamadas do Google Cloud para a proteção da infraestrutura e como o Google conquista e mantém a confiança dos clientes na nuvem. Como parte do programa de aprendizado do Líder digital do Cloud, o objetivo deste curso é ajudar você a crescer profissionalmente e desenvolver o futuro do seu próprio negócio.
Muitas empresas tradicionais usam sistemas e aplicativos legados que não conseguem atender às expectativas dos clientes modernos. Com frequência, os líderes empresariais precisam escolher entre manter sistemas de TI antigos ou investir em novos produtos e serviços. O curso "Modernização de infraestrutura e aplicativos com o Google Cloud" aborda esses desafios e oferece soluções relacionadas à tecnologia de nuvem para cada um. Como parte do programa de aprendizado do Líder digital do Cloud, o objetivo deste curso é ajudar você a crescer profissionalmente e desenvolver o futuro do seu próprio negócio.
As tecnologias de nuvem podem agregar muito valor a uma organização e, ao combinar esse poder com dados, o potencial de crescer e criar novas experiências para os clientes é ainda maior. O curso "Como é feita a transformação de dados com o Google Cloud" mostra como os dados agregam valor às organizações e como o Google Cloud torna esses dados eficientes e acessíveis. Este curso, que faz parte do programa de aprendizado do Líder digital do Cloud, se destina às pessoas que querem crescer na profissão e construir o futuro da empresa.
Data Catalog é um serviço de gerenciamento de metadados totalmente gerenciado e escalonável. Com ele, as organizações descobrem, compreendem e gerenciam rapidamente todos os dados. Nesta Quest, vamos começar com algo simples - você aprenderá como pesquisar e adicionar tags a recursos de dados e metadados usando o Data Catalog. Depois que você aprender a desenvolver seus próprios modelos de tags correlacionados a dados da tabela do BigQuery, mostraremos como criar conectores do MySQL, PostgreSQL e SQLServer para o Data Catalog.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Neste curso para iniciantes, você vai aprender sobre o fluxo de trabalho de análise de dados no Google Cloud e sobre as ferramentas necessárias para explorar, analisar e visualizar dados. Também vamos falar sobre como compartilhar suas descobertas com partes interessadas. Com o auxílio de laboratórios práticos, aulas, testes, demonstrações e um estudo de caso, vamos aprender a transformar conjuntos de dados brutos em dados limpos para gerar visualizações e dashboards de alto impacto. Se você já trabalha com dados e quer ter sucesso no Google Cloud ou progredir na carreira, este curso vai ajudar você a começar. Qualquer pessoa que trabalha ou usa análise de dados de forma profissional pode se beneficiar com este curso.
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery.
Conquiste o selo de habilidade introdutório Prepare os dados para relatórios e dashboards do Looker para mostrar que você sabe: filtrar, ordenar e dinamizar dados; mesclar resultados de diferentes Análises do Looker; e usar funções e operadores para criar dashboards e relatórios do Looker para análise e visualização de dados.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
Neste curso, vamos definir o que é machine learning e como ele pode beneficiar seu negócio. Você vai conferir algumas demonstrações do ML em ação e aprender termos importantes da área, como instâncias, atributos e rótulos. Nos laboratórios interativos, você vai praticar a invocação de APIs de ML pré-treinadas e criar seus próprios modelos de machine learning usando apenas SQL no BigQuery ML.
O terceiro curso desta série é "Achieving Advanced Insights with BigQuery". Para continuar desenvolvendo seus conhecimentos sobre SQL, vamos aprender a usar funções avançadas e dividir uma consulta completa em etapas gerenciáveis. Você também vai conhecer a arquitetura interna do BigQuery (armazenamento fragmentado com base em colunas) e tópicos avançados do SQL, como campos aninhados e repetidos usando matrizes e structs. Por fim, vamos aprender a otimizar consultas para melhorar o desempenho e a proteger seus dados com visualizações autorizadas. Depois de concluir este curso, inscreva-se no "Applying Machine Learning to Your Data with Google Cloud".
Este é o segundo curso da série "Data to Insights". Vamos aprender a fazer a ingestão de novos conjuntos de dados externos no BigQuery e visualizá-los no Looker Studio. Também vamos analisar conceitos intermediários de SQL, como as operações JOIN e UNION em várias tabelas, para analisar dados de diversas fontes. Observação: Mesmo que você tenha experiência em SQL, há aspectos específicos do BigQuery (como usar o cache de consultas e os caracteres curinga de tabela) que podem ser novidade para você. Depois de terminar este curso, faça sua inscrição no "Achieving Advanced Insights with BigQuery".
Neste curso, conhecemos os desafios mais comuns enfrentados pelos analistas de dados e como resolvê-los com as ferramentas de big data no Google Cloud. Ao longo do caminho, você vai aprender um pouco de SQL e se familiarizar com o uso do BigQuery e do Dataprep para analisar e transformar seus conjuntos de dados. Este é o primeiro curso da série From Data to Insights with Google Cloud. Depois de concluir este curso, inscreva-se no curso Creating New BigQuery Datasets and Visualizing Insights.
Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.
O curso Descobrindo a IA Generativa - Vertex AI é uma coleção de laboratórios sobre como usar a IA generativa no Google Cloud. Nos laboratórios, você vai aprender como usar os modelos da família da API Vertex AI PaLM, incluindo text-bison, chat-bison, e textembedding-gecko. Você também vai aprender sobre design de comandos, práticas recomendadas, e como isso pode ser usado para gerar ideias, classificar, extrair e resumir textos e muito mais. Saiba também como ajustar um modelo de fundação com um treinamento personalizado no Vertex AI e implantá-lo em um endpoint do Vertex AI.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.
Receba um selo de habilidade ao concluir os cursos "Introduction to Generative AI", "Introduction to Large Language Models" e "Introduction to Responsible AI". Consiga a aprovação nos testes finais dos cursos para demonstrar seu conhecimento sobre os conceitos básicos da IA generativa. Os selos de habilidades são digitais. Eles são emitidos pelo Google Cloud como forma de reconhecer sua capacidade de trabalhar com os produtos e serviços do Cloud. Torne seu perfil público e adicione os selos de habilidades às suas mídias sociais para mostrar seus conhecimentos.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence.
Este curso apresenta um resumo da arquitetura de codificador-decodificador, que é uma arquitetura de machine learning avançada e frequentemente usada para tarefas sequência para sequência (como tradução automática, resumo de textos e respostas a perguntas). Você vai conhecer os principais componentes da arquitetura de codificador-decodificador e aprender a treinar e disponibilizar esses modelos. No tutorial do laboratório relacionado, você vai codificar uma implementação simples da arquitetura de codificador-decodificador para geração de poesia desde a etapa inicial no TensorFlow.
Neste curso, ensinamos a criar um modelo de legenda para imagens usando aprendizado profundo. Você vai aprender sobre os diferentes componentes de um modelo de legenda para imagens, como o codificador e decodificador, e de que forma treinar e avaliar seu modelo. Ao final deste curso, você será capaz de criar e usar seus próprios modelos de legenda para imagens.
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
Este curso é uma introdução à arquitetura de transformador e ao modelo de Bidirectional Encoder Representations from Transformers (BERT, na sigla em inglês). Você vai aprender sobre os principais componentes da arquitetura de transformador, como o mecanismo de autoatenção, e como eles são usados para construir o modelo de BERT. Também vai conhecer as diferentes tarefas onde é possível usar o BERT, como classificação de texto, respostas a perguntas e inferência de linguagem natural. O curso leva aproximadamente 45 minutos.
Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.