Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Generative AI App Builder to integrate enterprise-grade generative AI search.
In diesem Kurs wird gezeigt, wie Sie KI-/ML-Modelle für Aufgaben basierend auf generativer KI in BigQuery verwenden. Anhand eines praktischen Anwendungsfalls zum Customer-Relationship-Management lernen Sie den Workflow zur Lösung eines Geschäftsproblems mit Gemini-Modellen kennen. Zur besseren Nachvollziehbarkeit bietet der Kurs auch eine Schritt-für-Schritt-Anleitung für das Programmieren von Lösungen mithilfe von SQL-Abfragen und Python-Notebooks.
Dieser Kurs richtet sich an Entwickler mit unterschiedlichen Kenntnissen. Er bietet eine Einführung in die wichtigsten Funktionen von Gemini Code Assist, einem KI-basierten Tool für die Zusammenarbeit bei der Anwendungsentwicklung in Google Cloud. Von intelligenten Codevorschlägen und Autovervollständigung bis hin zur Fehlererkennung in Echtzeit und Unterstützung beim Refactoring – Sie erfahren, wie Sie mit Gemini Code Assist Ihre Produktivität und die Codequalität deutlich steigern und wertvolle Zeit sparen, damit Sie sich auf wichtige Aufgaben konzentrieren können.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
Complete the intermediate Manage Kubernetes in Google Cloud skill badge to demonstrate skills in the following: managing deployments with kubectl, monitoring and debugging applications on Google Kubernetes Engine (GKE), and continuous delivery techniques. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
Earn a skill badge by completing the Create a Streaming Data Lake on Cloud Storage course, where you use Pub/Sub, Dataflow, and Cloud Storage together to create a streaming data lake on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
Mit dem Skill-Logo zum Kurs Generative KI-Anwendungen mit Gemini und Streamlit entwickeln weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Texterstellung, Anwendung von Funktionsaufrufen mit dem Python SDK und der Gemini API und Bereitstellung einer Streamlit-Anwendung mit Cloud Run. Dabei lernen Sie, wie Sie mithilfe von Gemini und entsprechenden Prompts Text erstellen, Cloud Shell zum Testen und Iterieren einer Streamlit-Anwendung nutzen und diese Anwendung dann als Docker-Container zur Bereitstellung in Cloud Run verpacken. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Mit dem Skill-Logo „Praxisorientierte KI-Anwendungen mit Gemini und Imagen entwickeln“ weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bilderkennung, Natural Language Processing, Bildgenerierung mit den leistungsstarken Gemini- und Imagen-Modellen von Google sowie Bereitstellen von Anwendungen auf der Vertex AI-Plattform.
This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Machine Learning gehört zu den am schnellsten wachsenden Technologiefeldern – und Google Cloud hat zu dessen Weiterentwicklung maßgeblich beigetragen. Dank zahlreicher APIs bietet Google Cloud ein Tool für nahezu jede Aufgabe im Bereich des maschinellen Lernens. In diesem Kurs für Einsteiger können Sie praktische Erfahrungen mit Machine Learning hinsichtlich der Sprachverarbeitung sammeln. Sie absolvieren Labs, in denen Sie Entitäten aus Text extrahieren, Sentiment- und Syntaxanalysen durchführen und die Speech-to-Text API für Transkriptionen verwenden.
In diesem Kurs werden wichtige Themen zu Datenschutz und Sicherheit beim Einsatz von künstlicher Intelligenz vorgestellt. Dabei lernen Sie, wie Sie mit Google Cloud-Produkten und Open-Source-Tools empfohlene Vorgehensweisen im Zusammenhang mit Datenschutz und Sicherheit beim Einsatz von KI umsetzen.
Mit auf generativer KI basierenden Anwendungen, kurz GenAI-Anwendungen, werden Nutzerinteraktionen möglich, die es vor Large Language Models (LLMs) kaum gab. Wie können Sie als Anwendungsentwickler mit generativer KI interaktive, leistungsstarke Anwendungen in Google Cloud erstellen? In diesem Kurs lernen Sie etwas über Anwendungen, die auf generativer KI basieren, und erfahren, wie Sie Prompt-Design und Retrieval-Augmented Generation (RAG) nutzen können, um mit LLMs leistungsstarke Anwendungen zu entwickeln. Wir stellen Ihnen eine produktionsreife Architektur für auf generativer KI basierende Anwendungen vor und Sie erstellen eine Chat-Anwendung auf der Basis von LLMs und RAG.
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
Business professionals in non-technical roles have a unique opportunity to lead or influence machine learning projects. If you have questions about machine learning and want to understand how to use it, without the technical jargon, this course is for you. Learn how to translate business problems into machine learning use cases and vet them for feasibility and impact. Find out how you can discover unexpected use cases, recognize the phases of an ML project and considerations within each, and gain confidence to propose a custom ML use case to your team or leadership or translate the requirements to a technical team.
In diesem kurzen Kurs zur Einbindung von Anwendungen mit Gemini 1.0 Pro-Modellen in Google Cloud lernen Sie die Gemini API und die zugehörigen generativen KI-Modelle kennen. Sie erfahren, wie Sie vom Code aus auf Gemini 1.0 Pro und Gemini 1.0 Pro Vision zugreifen. Dabei können Sie die Funktionen der Modelle mithilfe von Text-, Bild- und Videoprompts über eine Anwendung testen.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
Big Data, Machine Learning und künstliche Intelligenz sind heutzutage sehr wichtige Themen. Diese Technologiefelder bringen jedoch sehr spezielle Anforderungen mit sich und es ist schwierig, einführende Materialien dafür zu finden. Google Cloud bietet nutzerfreundliche Dienste in diesen Bereichen an, die in diesem Kurs für Einsteiger behandelt werden. Verschaffen Sie sich Einblicke in die Nutzung von Tools wie BigQuery, der Cloud Speech API und Video Intelligence.
Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.
This challenge lab tests your skills and knowledge from the labs in the Monitor and Manage Google Cloud Resources quest. You should be familiar with the content of labs before attempting this lab.
Sichern Sie sich ein Skill-Logo, indem Sie die Aufgabenreihe Google Cloud Compute: Grundlagen abschließen. Dabei lernen Sie, wie Sie Compute Engine bei der Arbeit mit virtuellen Maschinen (VMs), nichtflüchtigen Speichern und Webservern nutzen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Umgebung anwenden. Absolvieren Sie diese Skill-Logo-Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu bekommen, das Sie in Ihrem Netzwerk posten können.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
Mit dem Skill-Logo zum Kurs ML-Lösungen mit Vertex AI erstellen und bereitstellen weisen Sie fortgeschrittene Kenntnisse nach. Sie lernen in diesem Kurs, wie Sie die Vertex AI-Plattform von Google Cloud, AutoML und benutzerdefinierte Trainingsdienste nutzen, um Machine-Learning-Modelle zu trainieren, zu bewerten, abzustimmen, zu erklären und bereitzustellen. Dieser Kurs richtet sich an professionelle Data Scientists und Machine Learning Engineers. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie diese Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netzwerk posten können.
Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
In diesem Kurs erfahren Sie, wie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, Sie bei der Nutzung von Google-Produkten und -Diensten zum Entwickeln, Testen, Bereitstellen und Verwalten von Anwendungen unterstützen kann. Sie lernen, wie Sie mit Gemini eine Webanwendung entwickeln und debuggen, Tests entwickeln und Daten abfragen können. In einem praxisorientierten Lab können Sie sich davon überzeugen, wie der Softwareentwicklungs-Lebenszyklus durch Gemini verbessert werden kann. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
In diesem Kurs erfahren Sie, wie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, Engineers bei der Verwaltung von Infrastruktur unterstützt. Sie lernen die Prompts kennen, mit denen Gemini dazu gebracht werden kann, Anwendungslogs zu suchen und zu verstehen, einen GKE-Cluster zu erstellen und Informationen zur Erstellung einer Build-Umgebung zu liefern. In einem praxisorientierten Lab können Sie sich davon überzeugen, wie der DevOps-Workflow durch Gemini verbessert wird. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
In diesem Kurs erfahren Sie, wie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, Entwickler beim Erstellen von Anwendungen unterstützt. Sie lernen die Prompts kennen, mit denen Gemini Code erklären, Google Cloud-Dienste empfehlen und Code für Ihre Anwendungen generieren kann. In einem praxisorientierten Lab können Sie sich davon überzeugen, wie die Anwendungsentwicklung durch Gemini verbessert wird. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
In diesem Kurs erfahren Sie, wie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, Sie beim Schutz Ihrer Cloud-Umgebung und -Ressourcen unterstützen kann. Sie lernen, wie Sie Beispielarbeitslasten in einer Umgebung in Google Cloud bereitstellen und mit Gemini fehlerhafte Sicherheitseinstellungen identifizieren und korrigieren können. In einem praxisorientierten Lab können Sie sich davon überzeugen, wie Ihr Cloud-Sicherheitsstatus durch Gemini verbessert werden kann. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
In diesem Kurs erfahren Sie, wie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, Network Engineers beim Erstellen, Aktualisieren und Warten von VPC-Netzwerken unterstützt. Sie lernen die Prompts kennen, mit denen Gemini spezifische Hilfestellungen für Ihre netzwerkbezogenen Aufgaben geben kann – und entdecken Möglichkeiten, die über eine Suchmaschine hinausgehen. In einem praxisorientierten Lab können Sie sich davon überzeugen, wie Gemini die Arbeit mit Google Cloud VPC-Netzwerken vereinfacht. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
In diesem Kurs erfahren Sie, wie Sie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, bei der Analyse von Kundendaten und der Prognose von Produktverkäufen unterstützen kann. Außerdem lernen Sie, wie Sie mithilfe von Kundendaten in BigQuery Neukunden identifizieren, kategorisieren und gewinnen können. In den praxisorientierten Labs erfahren Sie, wie Gemini Datenanalysen und Workflows für Machine Learning optimiert. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
In diesem Kurs erfahren Sie, wie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, Administratoren bei der Bereitstellung von Infrastruktur unterstützt. Sie lernen die Prompts kennen, mit denen Gemini Infrastruktur erklären, GKE-Cluster bereitstellen und eine bestehende Infrastruktur aktualisieren kann. In einem praxisorientierten Lab können Sie sich davon überzeugen, wie die GKE-Bereitstellung durch Gemini verbessert wird. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
Complete the introductory Build LookML Objects in Looker skill badge to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
In this course, we define what machine learning is and how it can benefit your business. You'll see a few demos of ML in action and learn key ML terms like instances, features, and labels. In the interactive labs, you will practice invoking the pretrained ML APIs available as well as build your own Machine Learning models using just SQL with BigQuery ML.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Mit dem Skill-Logo Prompt-Design mit Vertex AI weisen Sie Grundkenntnisse in folgenden Bereichen nach: Prompt Engineering, Bildanalyse und multimodale generative Techniken in Vertex AI. Entdecken Sie, wie Sie wirksame Prompts erstellen, auf generativer KI basierende Ausgaben steuern und Gemini-Modelle in Marketing-Szenarien aus der Praxis anwenden. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
In diesem Anfängerkurs erhalten Sie Informationen über den Datenanalyse-Workflow in Google Cloud. Außerdem werden Ihnen die verfügbaren Tools zum Auswerten, Analysieren und Visualisieren von Daten sowie zur Freigabe Ihrer gewonnenen Erkenntnisse an Stakeholder vorgestellt. Anhand einer Fallstudie sowie von praxisorientierten Labs, Vorlesungen und Quizzen/Demos zeigt der Kurs, wie Rohdaten bereinigt und daraus wirkungsvolle Visualisierungen und Dashboards erstellt werden. Ganz gleich, ob Sie bereits mit Daten arbeiten und erfahren möchten, wie Sie in Google Cloud erfolgreich sein können, oder ob Sie sich beruflich weiterbilden möchten – dieser Kurs erleichtert Ihnen den Einstieg. Fast jeder, der bei seiner Arbeit Datenanalysen ausführt oder verwendet, kann von diesem Kurs profitieren.
Dieser Kurs bietet eine Einführung in die Transformer-Architektur und das BERT-Modell (Bidirectional Encoder Representations from Transformers). Sie lernen die Hauptkomponenten der Transformer-Architektur wie den Self-Attention-Mechanismus kennen und erfahren, wie Sie diesen zum Erstellen des BERT-Modells verwenden. Darüber hinaus werden verschiedene Aufgaben behandelt, für die BERT genutzt werden kann, wie etwa Textklassifizierung, Question Answering und Natural-Language-Inferenz. Der gesamte Kurs dauert ungefähr 45 Minuten.
In diesem Kurs erfahren Sie, wie Sie mithilfe von Deep Learning ein Modell zur Bilduntertitelung erstellen. Sie lernen die verschiedenen Komponenten eines solchen Modells wie den Encoder und Decoder und die Schritte zum Trainieren und Bewerten des Modells kennen. Nach Abschluss dieses Kurses haben Sie folgende Kompetenzen erworben: Erstellen eigener Modelle zur Bilduntertitelung und Verwenden der Modelle zum Generieren von Untertiteln
Da die Nutzung von künstlicher Intelligenz und Machine Learning in Unternehmen weiter zunimmt, wird auch deren verantwortungsbewusste Entwicklung ein immer wichtigeres Thema. Dabei ist es für viele schwierig, die Überlegungen zur verantwortungsbewussten Anwendung von KI in die Praxis umzusetzen. Wenn Sie wissen möchten, wie sich die verantwortungsbewusste Anwendung von KI in die Praxis umsetzen, also operationalisieren lässt, finden Sie in diesem Kurs entsprechende Hilfestellungen. In diesem Kurs erfahren Sie, wie dies mit Google Cloud heutzutage möglich ist, inklusive entsprechender Best Practices und Erkenntnisse. Es wird gezeigt, welches Framework Google Cloud bietet, um einen eigenen Ansatz für die verantwortungsbewusste Anwendung von KI zu entwickeln.
Dieser Kurs vermittelt Ihnen eine Zusammenfassung der Encoder-Decoder-Architektur, einer leistungsstarken und gängigen Architektur, die bei Sequenz-zu-Sequenz-Tasks wie maschinellen Übersetzungen, Textzusammenfassungen und dem Question Answering eingesetzt wird. Sie lernen die Hauptkomponenten der Encoder-Decoder-Architektur kennen und erfahren, wie Sie diese Modelle trainieren und bereitstellen können. Im dazugehörigen Lab mit Schritt-für-Schritt-Anleitung können Sie in TensorFlow von Grund auf einen Code für eine einfache Implementierung einer Encoder-Decoder-Architektur erstellen, die zum Schreiben von Gedichten dient.
In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.
In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.
Der Kurs „Generative KI kennenlernen – Vertex AI“ umfasst eine Reihe von Labs zur Verwendung von generativer KI in Google Cloud. In den Labs lernen Sie, wie Sie die Modelle der Vertex AI PaLM API-Familie verwenden, einschließlich text-bison, chat-bison, und textembedding-gecko. Außerdem lernen Sie, wie Sie Prompts gestalten, Best Practices anwenden und die Modelle für Ideenfindung, Textklassifizierung, Textextraktion, Textzusammenfassungen und mehr verwenden. Weiterhin erfahren Sie, wie Sie ein Foundation Model durch das Trainieren über benutzerdefiniertes Training in Vertex AI optimieren und es in einem Vertex AI-Endpunkt bereitstellen.
Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für die Interaktion mit generativen KI-Modellen sowie das Prototyping von Geschäftsideen und ihre Umsetzung. Anhand eines eindrucksvollen Anwendungsfalls, ansprechender Lektionen und einer praktischen Übung lernen Sie den Lebenszyklus vom Prompt bis zum Produkt kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design, Prompt Engineering und Modellabstimmung einsetzen können. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial von generativer KI in Ihren Projekten mit Vertex AI Studio ausschöpfen.
Earn a skill badge by completing the Introduction to Generative AI, Introduction to Large Language Models and Introduction to Responsible AI courses. By passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.