Hashmitha Katta
成为会员时间:2019
青铜联赛
2400 积分
成为会员时间:2019
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
C# has powered Windows .NET application development for nearly two decades and Google Cloud is committed to supporting developers getting their .NET workloads up and running on Google Cloud. In this quest, you will learn how to run C# apps in Google Cloud, and specifically how to take your apps to the next level by interfacing them with the big data and machine learning APIs that are accessible now from C#. By enrolling in this quest you will see firsthand how seamlessly Google Cloud integrates with .NET workloads and what the possibilities are for leveraging big data and ML services in your own C# projects.
This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.
Workspace is Google's collaborative applications platform, delivered from Google Cloud. In this introductory-level course you will get hands-on practice with Workspace’s core applications from a user perspective. Although there are many more applications and tool components to Workspace than are covered here, you will get experience with the primary apps: Gmail, Calendar, Sheets and a handful of others. Each lab can be completed in 10-15 minutes, but extra time is provided to allow self-directed free exploration of the applications.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this course you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out!
在此入门级挑战任务中,您可以使用 Google Cloud Platform 的基本工具和服务,开展真枪实弹的操作实训。“GCP 基本功能”是我们为 Google Cloud 学员推荐的第一项挑战任务。云知识储备微乎其微甚至零基础?不用担心!这项挑战任务会为您提供真枪实弹的实操经验,助您快速上手 GCP 项目。无论是要编写 Cloud Shell 命令还是部署您的第一台虚拟机,亦或是通过负载平衡机制或在 Kubernetes Engine 上运行应用,都可以通过“GCP 基本功能”了解该平台的基本功能之精要。点此观看 1 分钟视频,了解每个实验涉及的主要概念。
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
众所周知,机器学习是发展最快的技术领域之一, Google Cloud Platform 在推动其发展方面发挥了重要作用。 GCP 提供了一系列 API,几乎可以满足任何机器学习作业的需求。在 本入门课程中,您将了解机器学习在语言处理方面的运用, 通过实操实验学习 如何从文本中提取实体,执行情感和语法分析,以及 使用 Speech-to-Text API 进行转写。
想要仅使用 SQL 就能在几分钟内构建机器学习模型,而不是花费数小时?BigQuery 借助机器学习,数据分析师能够使用现有的 SQL 工具和技能创建、训练、评估机器学习模型,并使用这些模型进行预测, 从而实现机器学习的普及。在 本系列实验中,您将尝试不同的模型类型,并了解 如何构建出色的模型。
大数据、机器学习和人工智能是当今计算领域的热门话题, 但这些领域的专业性很强,因而很难找到 入门资料。幸运的是,Google Cloud 在这些领域提供了方便用户使用的服务, 通过本入门级课程,您可以 开始学习使用 BigQuery、Cloud Speech API 和 Video Intelligence 等工具。