Praval Visvanath
Member since 2022
Silver League
6500 points
Member since 2022
Complete the introductory Monitor and Log with Google Cloud Observability skill badge course to demonstrate skills in the following: monitoring virtual machines in Compute Engine, utilizing Cloud Monitoring for multi-project oversight, extending monitoring and logging capabilities to Cloud Functions, creating and sending custom application metrics, and configuring Cloud Monitoring alerts based on custom metrics.
Giriş düzeyindeki Compute Engine'de Yük Dengelemeyi Uygulama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: gcloud komutları yazma ve Cloud Shell kullanma, Compute Engine'de sanal makineler oluşturma ve dağıtma, ağ ve HTTP yük dengeleyicileri yapılandırma. Beceri rozeti, Google Cloud ürün ve hizmetlerine ilişkin uzmanlık düzeyinizin tanınması amacıyla Google Cloud tarafından verilen özel bir rozettir. Bu rozet, bilginizi etkileşimli ve uygulamalı bir ortamda uygulama becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozetini ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.
Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.
Dataprep is Google's self-service data preparation tool built in collaboration with Alteryx. Learn the basics of cleaning and preparing data for analysis and visualization, all in the Google ecosystem. In this course, you will learn how to connect Dataprep to your data in Cloud Storage and BigQuery, clean data using the interactive UI, profile the data, and publish your results back into the Google ecosystem. You will learn the basics of data transformation, including filtering values, reshaping the data, combining multiple datasets, deriving new values, and aggregating your dataset.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.
Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.
Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.
Giriş düzeyindeki BigQuery Verilerinden Analiz Elde Etme beceri rozetini alarak şu konulardaki becerilerinizi gösterin: SQL sorguları yazma, herkese açık tabloları sorgulama, örnek verileri BigQuery'ye yükleme, BigQuery'deki sorgu doğrulayıcı ile yaygın söz dizimi sorunlarını giderme ve BigQuery verilerine bağlanarak Looker Studio'da rapor oluşturma.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
Giriş düzeyindeki Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: Dataprep by Trifacta ile veri temizleme, Dataflow'da veri ardışık düzenleri çalıştırma, Dataproc'ta küme oluşturma ve Apache Spark işleri çalıştırma ve makine öğrenimi API'lerini (Cloud Natural Language API, Google Cloud Speech-to-Text API ve Video Intelligence API dahil olmak üzere) çağırma. Beceri rozeti, Google Cloud ürün ve hizmetlerindeki uzmanlık düzeyiniz karşılığında Google Cloud tarafından verilen özel bir dijital rozettir. Bilgilerinizi, etkileşimli ve uygulamalı bir ortamda kullanma becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozeti kursunu ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.