In diesem Kurs erfahren Sie, wie Sie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, bei der Analyse von Kundendaten und der Prognose von Produktverkäufen unterstützen kann. Außerdem lernen Sie, wie Sie mithilfe von Kundendaten in BigQuery Neukunden identifizieren, kategorisieren und gewinnen können. In den praxisorientierten Labs erfahren Sie, wie Gemini Datenanalysen und Workflows für Machine Learning optimiert. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
In diesem Kurs lernen Sie KI-basierte Suchtechnologien, Tools und Anwendungen kennen. Er umfasst folgende Themen: die semantische Suche mithilfe von Vektoreinbettungen, die Hybridsuche, bei der semantische und stichwortbezogene Ansätze kombiniert werden, und Retrieval-Augmented Generation (RAG), die KI-Halluzinationen durch einen fundierten KI-Agenten minimiert. Sie sammeln praktische Erfahrungen mit der Vektorsuche in Vertex AI zum Entwickeln einer intelligenten Suchmaschine.
Da die Nutzung von künstlicher Intelligenz und Machine Learning in Unternehmen weiter zunimmt, wird auch deren verantwortungsbewusste Entwicklung ein immer wichtigeres Thema. Dabei ist es für viele schwierig, die Überlegungen zur verantwortungsbewussten Anwendung von KI in die Praxis umzusetzen. Wenn Sie wissen möchten, wie sich die verantwortungsbewusste Anwendung von KI in die Praxis umsetzen, also operationalisieren lässt, finden Sie in diesem Kurs entsprechende Hilfestellungen. In diesem Kurs erfahren Sie, wie dies mit Google Cloud heutzutage möglich ist, inklusive entsprechender Best Practices und Erkenntnisse. Es wird gezeigt, welches Framework Google Cloud bietet, um einen eigenen Ansatz für die verantwortungsbewusste Anwendung von KI zu entwickeln.
Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für die Interaktion mit generativen KI-Modellen sowie das Prototyping von Geschäftsideen und ihre Umsetzung. Anhand eines eindrucksvollen Anwendungsfalls, ansprechender Lektionen und einer praktischen Übung lernen Sie den Lebenszyklus vom Prompt bis zum Produkt kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design, Prompt Engineering und Modellabstimmung einsetzen können. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial von generativer KI in Ihren Projekten mit Vertex AI Studio ausschöpfen.
Mit dem Skill-Logo Prompt-Design mit Vertex AI weisen Sie Grundkenntnisse in folgenden Bereichen nach: Prompt Engineering, Bildanalyse und multimodale generative Techniken in Vertex AI. Entdecken Sie, wie Sie wirksame Prompts erstellen, auf generativer KI basierende Ausgaben steuern und Gemini-Modelle in Marketing-Szenarien aus der Praxis anwenden. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Der Kurs „Generative KI kennenlernen – Vertex AI“ umfasst eine Reihe von Labs zur Verwendung von generativer KI in Google Cloud. In den Labs lernen Sie, wie Sie die Modelle der Vertex AI PaLM API-Familie verwenden, einschließlich text-bison, chat-bison, und textembedding-gecko. Außerdem lernen Sie, wie Sie Prompts gestalten, Best Practices anwenden und die Modelle für Ideenfindung, Textklassifizierung, Textextraktion, Textzusammenfassungen und mehr verwenden. Weiterhin erfahren Sie, wie Sie ein Foundation Model durch das Trainieren über benutzerdefiniertes Training in Vertex AI optimieren und es in einem Vertex AI-Endpunkt bereitstellen.
Earn a skill badge by completing the Introduction to Generative AI, Introduction to Large Language Models and Introduction to Responsible AI courses. By passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.
Dieser Kurs vermittelt Ihnen eine Zusammenfassung der Encoder-Decoder-Architektur, einer leistungsstarken und gängigen Architektur, die bei Sequenz-zu-Sequenz-Tasks wie maschinellen Übersetzungen, Textzusammenfassungen und dem Question Answering eingesetzt wird. Sie lernen die Hauptkomponenten der Encoder-Decoder-Architektur kennen und erfahren, wie Sie diese Modelle trainieren und bereitstellen können. Im dazugehörigen Lab mit Schritt-für-Schritt-Anleitung können Sie in TensorFlow von Grund auf einen Code für eine einfache Implementierung einer Encoder-Decoder-Architektur erstellen, die zum Schreiben von Gedichten dient.
In diesem Kurs erfahren Sie, wie Sie mithilfe von Deep Learning ein Modell zur Bilduntertitelung erstellen. Sie lernen die verschiedenen Komponenten eines solchen Modells wie den Encoder und Decoder und die Schritte zum Trainieren und Bewerten des Modells kennen. Nach Abschluss dieses Kurses haben Sie folgende Kompetenzen erworben: Erstellen eigener Modelle zur Bilduntertitelung und Verwenden der Modelle zum Generieren von Untertiteln
In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.
Dieser Kurs bietet eine Einführung in die Transformer-Architektur und das BERT-Modell (Bidirectional Encoder Representations from Transformers). Sie lernen die Hauptkomponenten der Transformer-Architektur wie den Self-Attention-Mechanismus kennen und erfahren, wie Sie diesen zum Erstellen des BERT-Modells verwenden. Darüber hinaus werden verschiedene Aufgaben behandelt, für die BERT genutzt werden kann, wie etwa Textklassifizierung, Question Answering und Natural-Language-Inferenz. Der gesamte Kurs dauert ungefähr 45 Minuten.
In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
Mit dem Skill-Logo zum Kurs Grundlegende Sicherheitsfunktionen in Google Cloud implementieren weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen und Zuweisen von Rollen mit Identity and Access Management (IAM); Erstellen und Verwalten von Dienstkonten; Herstellen einer privaten Verbindung zwischen Virtual Private Cloud-Netzwerken (VPC); Beschränken des Anwendungszugriffs mithilfe von Identity-Aware Proxy; Verwalten von Schlüsseln und verschlüsselten Daten mit Cloud Key Management Service (KMS); und Erstellen eines privaten Kubernetes-Clusters. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch Ihre Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netz…
Sichern Sie sich ein Skill-Logo, indem Sie den Kurs Geschütztes Google Cloud-Netzwerk erstellen abschließen. Dabei lernen Sie verschiedene netzwerkbezogene Ressourcen kennen, mit denen Sie Ihre Anwendungen in Google Cloud erstellen, skalieren und schützen können.
Mit dem Skill-Logo Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: Schreiben von gcloud-Befehlen, Verwenden von Cloud Shell, Erstellen und Bereitstellen von virtuellen Maschinen in der Compute Engine und Konfigurieren von Netzwerk- und HTTP-Load-Balancern. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud vergeben wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Security is an uncompromising feature of Google Cloud Platform services, and GCP has developed specific tools for ensuring safety and identity across your projects. In this game you will get hands-on practice with various security tools of the Google Cloud Platform.