Pallapothu Yegneswar
Member since 2025
Gold League
17135 points
Member since 2025
Complete the intermediate Implement DevOps Workflows in Google Cloud skill badge to demonstrate skills in the following: creating git repositories with Cloud Source Repositories, launching, managing, and scaling deployments on Google Kubernetes Engine (GKE), and architecting CI/CD pipelines that automate container image builds and deployments to GKE.
Hey there! You're invited to game on with Skills Boost Arcade Trivia for July Week 3! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the July Trivia Week 3 badge!
Giriş düzeyindeki Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: Dataprep by Trifacta ile veri temizleme, Dataflow'da veri ardışık düzenleri çalıştırma, Dataproc'ta küme oluşturma ve Apache Spark işleri çalıştırma ve makine öğrenimi API'lerini (Cloud Natural Language API, Google Cloud Speech-to-Text API ve Video Intelligence API dahil olmak üzere) çağırma.
Güvenli Bir Google Cloud Ağı Oluşturma kursunu tamamlayarak beceri rozeti kazanın. Bu kursta, Google Cloud'da uygulamalarınızı derlemek, ölçeklendirmek ve korumak için ağla ilgili birden fazla kaynak hakkında bilgi edineceksiniz.
Google Cloud'da Uygulama Geliştirme Ortamı Oluşturma kursunu tamamlayarak beceri rozeti kazanın. Bu kursta Cloud Storage, Identity and Access Management, Cloud Functions ve Pub/Sub gibi teknolojilerin temel özelliklerini kullanarak depolama odaklı bulut altyapısı oluşturma ve bu altyapıyla bağlantı kurmayı öğreneceksiniz.
Giriş düzeyindeki Compute Engine'de Yük Dengelemeyi Uygulama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: gcloud komutları yazma ve Cloud Shell kullanma, Compute Engine'de sanal makineler oluşturma ve dağıtma, ağ ve HTTP yük dengeleyicileri yapılandırma. Beceri rozeti, Google Cloud ürün ve hizmetlerine ilişkin uzmanlık düzeyinizin tanınması amacıyla Google Cloud tarafından verilen özel bir rozettir. Bu rozet, bilginizi etkileşimli ve uygulamalı bir ortamda uygulama becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozetini ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.
This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.
Google Cloud Computing Foundations kursunda, bulut bilişimi alanında daha önce çalışmamış veya bu konuda hiç deneyimi olmayan bireylere; temel bulut kavramları, büyük veri ve makine öğrenimi gibi kavramlar ve Google Cloud’un bu kavramlarla hangi noktada, nasıl birlikte çalıştığı ayrıntılı bir genel bakışla anlatılır. Kursun sonunda öğrenciler bulut bilişimi, büyük veri ve makine öğrenimi konularında fikir yürütüp bazı becerileri pratik olarak sergileyebilecek seviyeye ulaşacaktır. Bu kurs, Google Cloud Computing Foundations adlı kurs serisinin bir parçasıdır. Kurslar aşağıdaki sırayla tamamlanmalıdır: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales Bu üçüncü kursta güvenli ağlar oluşturma,…
Hey there! You're invited to game on with Skills Boost Arcade Trivia for July Week 2! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the July Trivia Week 2 badge!
Hey there! You're invited to game on with Skills Boost Arcade Trivia for July Week 1! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the July Trivia Week 1 badge!
Google Cloud Computing Foundations kursunda, bulut bilişimi alanında daha önce çalışmamış veya bu konuda hiç deneyimi olmayan bireylere; temel bulut kavramları, büyük veri ve makine öğrenimi gibi kavramlar ve Google Cloud’un bu kavramlarla hangi noktada, nasıl birlikte çalıştığı ayrıntılı bir genel bakışla anlatılır. Kursun sonunda öğrenciler bulut bilişimi, büyük veri ve makine öğrenimi konularında fikir yürütüp bazı becerileri pratik olarak sergileyebilecek seviyeye ulaşacaktır. Bu kurs, Google Cloud Computing Foundations adlı kurs serisinin bir parçasıdır. Kurslar aşağıdaki sırayla tamamlanmalıdır: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales Bu ikinci kursta Google Cloud'da depol…
Google Cloud Computing Foundations kursunda, bulut bilişimi alanında daha önce çalışmamış veya bu konuda hiç deneyimi olmayan bireylere; temel bulut kavramları, büyük veri, makine öğrenimi gibi kavramlar ve Google Cloud'un bu kavramlarla hangi noktada, nasıl birlikte çalıştığı ayrıntılı bir genel bakışla anlatılır. Kursun sonunda öğrenciler bulut bilişimi, büyük veri ve makine öğrenimi konularında fikir yürütüp bazı becerileri pratik olarak sergileyebilecek seviyeye ulaşacaktır. Bu kurs, Google Cloud Computing Foundations adlı kurs serisinin bir parçasıdır. Kurslar aşağıdaki sırayla tamamlanmalıdır: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales İlk kursta bulut bilişimi, Google Cloud'u k…
In this course, you will be learning from ML Engineers and Trainers who work with the state-of-the-art development of ML pipelines here at Google Cloud. The first few modules will cover about TensorFlow Extended (or TFX), which is Google’s production machine learning platform based on TensorFlow for management of ML pipelines and metadata. You will learn about pipeline components and pipeline orchestration with TFX. You will also learn how you can automate your pipeline through continuous integration and continuous deployment, and how to manage ML metadata. Then we will change focus to discuss how we can automate and reuse ML pipelines across multiple ML frameworks such as tensorflow, pytorch, scikit learn, and xgboost. You will also learn how to use another tool on Google Cloud, Cloud Composer, to orchestrate your continuous training pipelines. And finally, we will go over how to use MLflow for managing the complete machine learning life cycle.