加入 登录

在 Google Cloud 控制台中运用您的技能

Axel VILLANUEVA

成为会员时间:2024

黄金联赛

41870 积分
Serverless Data Processing with Dataflow: Operations Earned Aug 9, 2024 EDT
Preparing for your Professional Data Engineer Journey Earned May 13, 2024 EDT
Serverless Data Processing with Dataflow: Develop Pipelines Earned May 8, 2024 EDT
Serverless Data Processing with Dataflow: Foundations Earned May 3, 2024 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned May 3, 2024 EDT
Build Streaming Data Pipelines on Google Cloud Earned May 2, 2024 EDT
在 Google Cloud 上为机器学习 API 准备数据 Earned May 1, 2024 EDT
利用 BigQuery ML 构建预测模型时的数据工程处理 Earned Apr 30, 2024 EDT
Build Batch Data Pipelines on Google Cloud Earned Apr 30, 2024 EDT
Secure BigLake Data Earned Apr 22, 2024 EDT
使用 Dataplex 构建数据网格 Earned Apr 18, 2024 EDT
Dataplex 使用入门 Earned Apr 17, 2024 EDT
Getting Started with Terraform for Google Cloud Earned Apr 17, 2024 EDT
在 Google Cloud 上使用 Terraform 构建基础设施 Earned Apr 16, 2024 EDT
Scaling with Google Cloud Operations Earned Apr 11, 2024 EDT
Trust and Security with Google Cloud Earned Apr 11, 2024 EDT
Modernize Infrastructure and Applications with Google Cloud Earned Apr 11, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned Apr 10, 2024 EDT
Exploring Data Transformation with Google Cloud Earned Apr 10, 2024 EDT
Digital Transformation with Google Cloud Earned Apr 9, 2024 EDT
使用 BigQuery 构建数据仓库 Earned Apr 8, 2024 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned Apr 5, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Apr 4, 2024 EDT

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

了解详情

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

了解详情

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

了解详情

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

了解详情

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

了解详情

完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。

了解详情

完成中级技能徽章课程利用 BigQuery ML 构建预测模型时的数据工程处理, 展示自己在以下方面的技能:利用 Dataprep by Trifacta 构建 BigQuery 数据转换流水线; 利用 Cloud Storage、Dataflow 和 BigQuery 构建提取、转换和加载 (ETL) 工作流; 以及利用 BigQuery ML 构建机器学习模型。

了解详情

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

了解详情

Complete the introductory Secure BigLake Data skill badge course to demonstrate skills with IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables.

了解详情

完成入门技能徽章课程使用 Dataplex 构建数据网格,展示以下方面的技能:使用 Dataplex 构建数据网格, 以在 Google Cloud 上实现数据安全、治理和发现。您将在 Dataplex 中练习和测试自己在标记资产、分配 IAM 角色和评估数据质量方面的技能。

了解详情

完成入门级技能徽章课程 Dataplex 使用入门, 展现您在以下方面的技能:创建 Dataplex 资产,创建切面类型, 以及将切面应用于 Dataplex 中的条目。

了解详情

This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.

了解详情

完成在 Google Cloud 上使用 Terraform 构建基础设施技能徽章中级课程, 展示您在以下方面的技能:在使用 Terraform 时遵循基础设施即代码 (IaC) 原则;利用 Terraform 配置 来预配和管理 Google Cloud 资源;管理有效状态(本地和远程);以及将 Terraform 代码模块化,以方便重复使用和整理。

了解详情

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

了解详情

完成中级技能徽章课程使用 BigQuery 构建数据仓库,展示以下技能: 联接数据以创建新表、排查联接故障、使用并集附加数据、创建日期分区表, 以及在 BigQuery 中使用 JSON、数组和结构体。 技能徽章是 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后 才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛, 获得数字徽章,在您的人际圈中炫出自己的技能。

了解详情

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

了解详情

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

了解详情