参加 ログイン

Google Cloud コンソールでスキルを試す

Rai Chulindra

メンバー加入日: 2021

ゴールドリーグ

12375 ポイント
大規模言語モデルの概要 Earned 4月 29, 2025 EDT
Associate Cloud Engineer の取得に向けた準備 Earned 4月 28, 2025 EDT
Google Cloud における Terraform を使用したインフラストラクチャの構築 Earned 4月 28, 2025 EDT
Google Cloud ネットワークの構築 Earned 4月 26, 2025 EDT
Google Cloud でのクラウド セキュリティの基礎の実践 Earned 4月 25, 2025 EDT
生成 AI の概要 Earned 4月 23, 2025 EDT
ML オペレーション(MLOps): 概要 Earned 4月 22, 2025 EDT
Professional Machine Learning Engineer 学習ガイド Earned 4月 22, 2025 EDT
生成 AI のための ML オペレーション(MLOps) Earned 4月 22, 2025 EDT
安全な Google Cloud ネットワークの構築 Earned 4月 17, 2025 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 4月 13, 2025 EDT
Compute Engine でのロード バランシングの実装 Earned 4月 12, 2025 EDT

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

このコースでは、Associate Cloud Engineer 認定試験の合格を目指す方が受験の準備を進めることができます。試験範囲に含まれる Google Cloud ドメインの概要と、ドメインに関する知識を高めるための学習計画の作成方法について学習します。

詳細

「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。

詳細

「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。

詳細

Google Cloud でのクラウド セキュリティの基礎の実践 スキルバッジを獲得できる中級コースを修了すると、 Identity and Access Management(IAM)でのロールの作成と割り当て、 サービス アカウントの作成と管理、Virtual Private Cloud(VPC)ネットワーク全体でのプライベート接続の有効化、 Identity-Aware Proxy を使用したアプリケーション アクセスの制限、Cloud Key Management Service(KMS)を使用した鍵と暗号化されたデータの管理、 限定公開 Kubernetes クラスタの作成に関するスキルを実証できます。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。機械学習エンジニアリングの担当者は、ツールを活用して、デプロイしたモデルの継続的な改善と評価を行います。また、データ サイエンティストと協力して、あるいは自らがデータ サイエンティストとして、最も効果的なモデルを迅速かつ正確にデプロイできるようモデルを開発します。

詳細

このコースでは、PMLE(Professional Machine Learning Engineer)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握したうえで、また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。

詳細

安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

Compute Engine でのロード バランシングの実装 スキルバッジを獲得できる入門コースを修了すると、次のスキルを実証できます: gcloud コマンドの記述と Cloud Shell の使用、Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサと HTTP ロードバランサの構成。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。この入門コースと最終評価チャレンジラボを完了し、 スキルバッジを獲得しましょう。このスキルバッジはネットワークで共有できます。

詳細