Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Chulindra Rai

Date d'abonnement : 2021

Ligue d'Or

12375 points
Présentation des grands modèles de langage Earned avr. 29, 2025 EDT
Se préparer à devenir Associate Cloud Engineer Earned avr. 28, 2025 EDT
Créer une infrastructure avec Terraform sur Google Cloud Earned avr. 28, 2025 EDT
Développer votre réseau Google Cloud Earned avr. 26, 2025 EDT
Implémenter des pratiques de base pour la sécurité du cloud sur Google Cloud Earned avr. 25, 2025 EDT
Présentation de l'IA générative Earned avr. 23, 2025 EDT
Machine Learning Operations (MLOps) : premiers pas Earned avr. 22, 2025 EDT
Guide de préparation pour devenir ingénieur professionnel en machine learning Earned avr. 22, 2025 EDT
Machine Learning Operations (MLOps) pour l'IA générative Earned avr. 22, 2025 EDT
Créer un réseau Google Cloud sécurisé Earned avr. 17, 2025 EDT
Configurer un environnement de développement d'applications sur Google Cloud Earned avr. 13, 2025 EDT
Implémenter l'équilibrage de charge sur Compute Engine Earned avr. 12, 2025 EDT

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours vous aide à préparer l'examen pour obtenir la certification Associate Cloud Engineer. Vous découvrirez les domaines Google Cloud abordés dans l'examen et verrez comment créer un plan de formation pour améliorer vos connaissances de ces domaines.

En savoir plus

Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation.

En savoir plus

Suivez le cours Développer votre réseau Google Cloud et obtenez un badge de compétence. Dans ce cours, vous avez appris plusieurs façons de déployer et de surveiller des applications. Pour cela, vous avez vu comment parcourir les rôles IAM et ajouter/supprimer l'accès au projet, créer des réseaux VPC, déployer et surveiller des VM Compute Engine, rédiger des requêtes SQL, déployer et surveiller des VM dans Compute Engine, mais aussi comment déployer des applications à l'aide de Kubernetes avec plusieurs approches de déploiement.

En savoir plus

Terminez le cours intermédiaire Implémenter des pratiques de base pour la sécurité du cloud sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'attribution de rôles avec Identity and Access Management (IAM) ; la création et la gestion de comptes de service ; l'activation d'une connectivité privée sur les réseaux de cloud privé virtuel (VPC) ; la restriction de l'accès aux applications avec Identity-Aware Proxy ; la gestion des clés et des données chiffrées avec Cloud Key Management Service (KMS) ; et la création d'un cluster Kubernetes privé.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.

En savoir plus

Ce cours aide les participants à créer un plan de formation pour l'examen de certification afin de devenir ingénieur professionnel en machine learning (PMLE, Professional Machine Learning Engineer). Ils découvriront l'ampleur et le champ d'application des domaines abordés lors de l'examen. Ils détermineront s'ils sont prêts à passer l'examen et créeront leur propre plan de formation.

En savoir plus

Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.

En savoir plus

Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud.

En savoir plus

Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.

En savoir plus

Terminez le cours d'introduction Implémenter l'équilibrage de charge sur Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de commandes gcloud et l'utilisation de Cloud Shell, la création et le déploiement de machines virtuelles dans Compute Engine, ainsi que la configuration d'équilibreurs de charge réseau et HTTP. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus