加入 登录

在 Google Cloud 控制台中运用您的技能

Alex Caian

成为会员时间:2023

钻石联赛

62196 积分
Model Armor:保障 AI 部署安全 Earned Sep 26, 2025 EDT
AI 时代安全性简介 Earned Sep 24, 2025 EDT
利用 Vertex AI 实现机器学习运维 (MLOps):模型评估 Earned Sep 24, 2025 EDT
使用 Google Vids 制作引人入胜的视频 Earned Sep 22, 2025 EDT
Google 云端硬盘中的 Gemini Earned Sep 22, 2025 EDT
生成式 AI 智能体:助力组织转型 Earned May 23, 2025 EDT
生成式 AI 应用:改变工作方式 Earned May 20, 2025 EDT
生成式 AI: 全面了解生成式 AI Earned May 13, 2025 EDT
生成式 AI:剖析基本概念 Earned May 13, 2025 EDT
生成式 AI:不只是聊天机器人 Earned May 11, 2025 EDT
适用于生成式 AI 的机器学习运维 (MLOps) Earned Apr 16, 2025 EDT
面向开发者的 Responsible AI:隐私保护和安全 Earned Apr 15, 2025 EDT
面向开发者的 Responsible AI:可解释性和透明度 Earned Mar 23, 2025 EDT
面向开发者的 Responsible AI:公平性与偏见 Earned Mar 13, 2025 EDT
使用多模态 Gemini 和多模态 RAG 检查富文档 Earned Mar 11, 2025 EDT
矢量搜索和嵌入 Earned Mar 5, 2025 EST
Vertex AI Studio 简介 Earned Feb 9, 2025 EST
创建图片标注模型 Earned Jan 26, 2025 EST
Transformer 模型和 BERT 模型 Earned Jan 26, 2025 EST
编码器-解码器架构 Earned Jan 21, 2025 EST
注意力机制 Earned Jan 21, 2025 EST
图像生成简介 Earned Jan 21, 2025 EST
Responsible AI: 和 Google Cloud 一起践行 AI 原则 Earned Sep 10, 2024 EDT
在 Vertex AI 中设计提示 Earned Sep 9, 2024 EDT
负责任的 AI 简介 Earned Sep 9, 2024 EDT
大型语言模型简介 Earned Sep 9, 2024 EDT
生成式 AI 简介 Earned Sep 9, 2024 EDT
Google Meet 中的 Gemini Earned Aug 15, 2024 EDT
Google 表格中的 Gemini Earned Aug 15, 2024 EDT
Google 幻灯片中的 Gemini Earned Aug 15, 2024 EDT
Google 文档中的 Gemini Earned Aug 15, 2024 EDT
Gmail 中的 Gemini Earned Aug 9, 2024 EDT
Gemini for Google Workspace 简介 Earned Aug 9, 2024 EDT
Scaling with Google Cloud Operations Earned Jun 12, 2024 EDT
Trust and Security with Google Cloud Earned Jun 4, 2024 EDT
Modernize Infrastructure and Applications with Google Cloud Earned May 23, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned Apr 30, 2024 EDT
Exploring Data Transformation with Google Cloud Earned Apr 10, 2024 EDT
Digital Transformation with Google Cloud Earned Apr 4, 2024 EDT
在 Vertex AI 上构建和部署机器学习解决方案 Earned Nov 30, 2023 EST
在 Google Cloud 上为机器学习 API 准备数据 Earned Nov 28, 2023 EST
ML Pipelines on Google Cloud Earned Nov 27, 2023 EST
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Nov 23, 2023 EST
Machine Learning Operations (MLOps): Getting Started Earned Nov 20, 2023 EST
Recommendation Systems on Google Cloud Earned Nov 17, 2023 EST
Natural Language Processing on Google Cloud Earned Nov 15, 2023 EST
Computer Vision Fundamentals with Google Cloud Earned Nov 10, 2023 EST
Production Machine Learning Systems Earned Nov 8, 2023 EST
Machine Learning in the Enterprise Earned Nov 3, 2023 EDT
Feature Engineering Earned Nov 1, 2023 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Oct 28, 2023 EDT
Launching into Machine Learning Earned Oct 24, 2023 EDT
Google Cloud 上的 AI 和机器学习简介 Earned Oct 20, 2023 EDT
Analyzing and Visualizing Data in Looker Earned Oct 11, 2023 EDT
Google Cloud 数据分析功能简介 Earned Oct 6, 2023 EDT

本课程回顾了 Model Armor 的基本安全功能,并让您能够使用该服务。您将了解与 LLM 相关的安全风险,以及 Model Armor 如何保护您的 AI 应用。

了解详情

人工智能 (AI) 具备巨大的变革潜力,但也带来了新的安全挑战。本课程专为负责安全性和数据保护的领导者而设计,助其运用相关策略在组织内安全管理 AI。学习一个有助于实现以下目标的框架:主动识别并减轻 AI 特有的风险,保护敏感数据,确保遵从法规,构建弹性 AI 基础设施。通过四个不同行业的精选用例,探索这些策略如何应用于现实场景。

了解详情

本课程能让机器学习从业者掌握评估生成式和预测式 AI 模型的基本工具、方法和最佳实践。要确保机器学习系统在实际运用中提供可靠、准确、高效的结果,做好模型评估至关重要。 学员将深入了解各项评估指标、方法及如何在不同模型类型和任务中适当应用这些指标和方法。课程将着重介绍生成式 AI 模型带来的独特挑战,并提供有效解决这些挑战的策略。通过利用 Google Cloud 的 Vertex AI Platform,学员可学习如何在模型选择、优化和持续监控工作中实施卓有成效的评估流程。

了解详情

在本课程中,您将了解 Google Vids,这是一款面向特定 Google Workspace 用户的在线视频制作与编辑应用。通过课程讲解和演示,您将学习如何在工作中通过视频来制作和讲述引人入胜的故事。您还将了解如何无缝整合媒体、音频和视频片段,自定义风格,并轻松分享您的作品。 Vids 的部分功能借助生成式 AI 来帮助您更高效地进行创作。请注意,包括 Gemini 在内的生成式 AI 工具可能会提供不准确或不恰当的信息。请勿将 Gemini 功能提供的信息作为医疗、法律、财务或其他专业领域的建议。另需注意,Gemini 功能提供的建议不代表 Google 的观点,Google 对此概不负责。

了解详情

Gemini for Google Workspace 是一个插件,用户可通过它来使用生成式 AI 功能。本课程通过视频课程、实操活动和实际示例,深入探讨了“Google 云端硬盘中的 Gemini”的功能。 学完本课程后,您将掌握相关知识和技能,能够自信地利用 Google 云端硬盘中的 Gemini 来改进工作流。

了解详情

“生成式 AI 智能体:助力组织转型”是“Generative AI Leader”学习路线中的第五门课程,也是最后一门课程。本课程探讨了组织如何使用自定义生成式 AI 智能体,帮助应对特定的业务挑战。您将亲自动手构建一个基本的生成式 AI 智能体,并探索这些智能体的组成部分,例如模型、推理循环以及各种工具。

了解详情

“生成式 AI 应用:改变工作方式”是 Generative AI Leader 学习路线的第四门课程。本课程介绍 Google 的生成式 AI 应用,例如 Gemini for Workspace 和 NotebookLM。它将引导您逐一了解接地、检索增强生成、构建有效提示和构建自动化工作流等概念。

了解详情

“生成式 AI: 全面了解生成式 AI”是 Generative AI Leader 学习路线中的第三门课程。生成式 AI 正在改变我们的工作方式,以及我们与周围世界的互动方式。作为领导者,应该如何利用生成式 AI 来推动实现实际的业务成果?在本课程中,您将探索构建生成式 AI 解决方案的不同层级、Google Cloud 的产品,以及选择解决方案时需要考虑的因素。

了解详情

“生成式 AI: 剖析基本概念”是 Generative AI Leader 学习路线中的第二门课程。在本课程中,您将了解生成式 AI 的基本概念。您要探索 AI、机器学习和生成式 AI 之间的区别,了解各种数据类型如何赋能生成式 AI,从而应对各种业务挑战。您还将深入了解 Google Cloud 应对基础模型局限性的策略,以及负责任和安全的 AI 开发与部署面临着哪些关键挑战。

了解详情

“生成式 AI:不只是聊天机器人”是 Generative AI Leader 学习路线中的第一门课程。学习本课程没有知识门槛。本课程旨在帮助您超越对聊天机器人的基本认知,探索生成式 AI技术为您的组织带来的真正潜力。您将探索基础模型和提示工程等概念,这些知识对利用生成式 AI 的强大功能至关重要。本课程还将说明,为组织制定成功的生成式 AI 策略时,需要考虑哪些重要因素。

了解详情

本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。

了解详情

本课程介绍 AI 隐私保护和安全方面的重要主题,还将探索使用 Google Cloud 产品和开源工具实施建议的 AI 隐私保护和安全实践的实用方法和工具。

了解详情

本课程介绍了 AI 可解释性和透明度的相关概念,探讨了 AI 透明度对于开发者和工程师的重要性。同时探索了有助于在数据和 AI 模型中实现可解释性和透明度的实用方法及工具。

了解详情

本课程介绍了 Responsible AI 的概念和 AI 原则,还介绍了在 AI/机器学习实践中识别公平性与偏见以及减少偏见的实用技巧,同时探索了使用 Google Cloud 产品和开源工具来实施 Responsible AI 最佳实践的实用方法和工具。

了解详情

完成中级技能徽章课程使用多模态 Gemini 和多模态 RAG 检查富文档,展示您在以下方面的技能: 将多模态与 Gemini 配合使用,从而使用多模态提示从文本数据和视觉数据中提取信息、生成视频说明、 检索视频中不包含的额外信息; 将多模态检索增强生成 (RAG) 与 Gemini 配合使用,以构建包含文本和图片的文档的元数据、获取所有相关文本块并输出引用。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度; 您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章, 在您的人际圈中炫出自己的技能。

了解详情

在本次课程中,探索 AI 赋能的搜索技术、工具和应用。学习利用向量嵌入的语义搜索、融合语义和关键字的混合搜索方法,以及检索增强生成 (RAG) 技术,以打造基于事实的 AI 智能体,尽可能减少 AI 幻觉。获取 Vertex AI Vector Search 实战经验,打造您自己的智能搜索引擎。

了解详情

本课程介绍 Vertex AI Studio,这是一种用于与生成式 AI 模型交互、围绕业务创意进行原型设计并在生产环境中落地的工具。通过沉浸式应用场景、富有吸引力的课程和实操实验,您将探索从提示到产品的整个生命周期,了解如何将 Vertex AI Studio 用于多模态 Gemini 应用、提示设计、提示工程和模型调优。本课程的目的在于帮助您利用 Vertex AI Studio,在自己的项目中充分发掘生成式 AI 的潜力。

了解详情

本课程教您如何使用深度学习来创建图片标注模型。您将了解图片标注模型的不同组成部分,例如编码器和解码器,以及如何训练和评估模型。学完本课程,您将能够自行创建图片标注模型并用来生成图片说明。

了解详情

本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。

了解详情

本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。

了解详情

本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。

了解详情

本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。

了解详情

随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。

了解详情

完成 在 Vertex AI 中设计提示入门技能徽章课程,展示以下方面的技能: Vertex AI 中的提示工程、图片分析和多模态生成式技术。探索如何编写有效的提示,指导生成式 AI 输出, 以及将 Gemini 模型应用于真实的营销场景。

了解详情

这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。

了解详情

这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。

了解详情

这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。

了解详情

Google Workspace 专用 Gemini 是一个插件,可为用户提供对生成式 AI 功能的访问权限。本课程深入探讨了“Google Meet 中的 Gemini”的功能。通过视频课程、实操活动和实际示例,您将全面了解 Google Meet 中的 Gemini 功能。您将学习如何使用 Gemini 生成背景图片、提高视频质量以及翻译字幕。学完本课程后,您将掌握相关知识和技能,能够自信地利用 Google Meet 中的 Gemini 尽可能提高视频会议的效率。

了解详情

Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本迷你课程中,您将了解 Gemini 的主要功能,以及如何在 Google 表格中使用它们来提高工作效率。

了解详情

Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本迷你课程中,您将了解 Gemini 的主要功能,以及如何在 Google 幻灯片中使用它们来提高工作效率。

了解详情

Google Workspace 专用 Gemini 是一个插件,用户可通过它来使用生成式 AI 功能。本课程通过视频课程、实操活动和实际示例,深入探讨了“Google 文档中的 Gemini”的功能。您将学习如何使用 Gemini 来根据提示生成书面内容。您还会探索如何使用 Gemini 来修改已撰写好的文本,帮助提升整体工作效率。学完本课程后,您将掌握相关知识和技能,能够自信地利用 Google 文档中的 Gemini 来提升写作水平。

了解详情

Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本迷你课程中,您将了解 Gemini 的主要功能,以及如何在 Gmail 中使用这些功能来提高工作效率。

了解详情

Google Workspace 专用 Gemini 是一个插件,可在 Google Workspace 中为客户提供生成式 AI 功能。在本学习路线中,您将了解 Gemini 的主要功能,以及如何在 Google Workspace 中使用它们来提高工作效率。

了解详情

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

了解详情

完成在 Vertex AI 上构建和部署机器学习解决方案课程,赢取中级技能徽章。 在此课程中,您将了解如何使用 Google Cloud 的 Vertex AI Platform、AutoML 以及自定义训练服务来 训练、评估、调优、解释和部署机器学习模型。 此技能徽章课程的目标受众是专业的数据科学家和机器学习 工程师。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您对 Google Cloud 产品与服务的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能徽章课程 和作为最终评估的实验室挑战赛,即可获得数字徽章, 在您的人际圈中炫出自己的技能。

了解详情

完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。

了解详情

In this course, you will be learning from ML Engineers and Trainers who work with the state-of-the-art development of ML pipelines here at Google Cloud. The first few modules will cover about TensorFlow Extended (or TFX), which is Google’s production machine learning platform based on TensorFlow for management of ML pipelines and metadata. You will learn about pipeline components and pipeline orchestration with TFX. You will also learn how you can automate your pipeline through continuous integration and continuous deployment, and how to manage ML metadata. Then we will change focus to discuss how we can automate and reuse ML pipelines across multiple ML frameworks such as tensorflow, pytorch, scikit learn, and xgboost. You will also learn how to use another tool on Google Cloud, Cloud Composer, to orchestrate your continuous training pipelines. And finally, we will go over how to use MLflow for managing the complete machine learning life cycle.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

了解详情

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

了解详情

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

了解详情

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

了解详情

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

本课程介绍 Google Cloud 中的 AI 和机器学习 (ML) 服务,这些服务可构建预测式和生成式 AI 项目。本课程探讨从数据到 AI 的整个生命周期中可用的技术、产品和工具,包括 AI 基础、开发和解决方案。通过引人入胜的学习体验和实操练习,本课程可帮助数据科学家、AI 开发者和机器学习工程师提升技能和知识水平。

了解详情

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

了解详情

在本新手级课程中,您将了解 Google Cloud 数据分析工作流,以及可用于探索、分析和直观呈现数据并与相关人员共享发现结果的工具。结合案例研究、实操实验、讲座和测验/演示,本课程展示了如何将原始数据集转化为纯净数据,进而转化为实用的可视化图表和信息中心。无论您是已经在从事数据工作并想了解如何通过 Google Cloud 取得成功,还是在寻求职业发展,都可以借助本课程迈出第一步。几乎所有在工作中执行或使用数据分析的人都可以从本课程中受益。

了解详情