Приєднатися Увійти

Apply your skills in Google Cloud console

Alex Caian

Учасник із 2023

Діамантова ліга

Кількість балів: 62196
Model Armor: Securing AI Deployments Earned вер. 26, 2025 EDT
Introduction to Security in the World of AI Earned вер. 24, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation Earned вер. 24, 2025 EDT
Create Engaging Video with Google Vids Earned вер. 22, 2025 EDT
Gemini in Google Drive Earned вер. 22, 2025 EDT
Gen AI Agents: Transform Your Organization Earned трав. 23, 2025 EDT
Gen AI Apps: Transform Your Work Earned трав. 20, 2025 EDT
Gen AI: Navigate the Landscape Earned трав. 13, 2025 EDT
Gen AI: Unlock Foundational Concepts Earned трав. 13, 2025 EDT
Gen AI: Beyond the Chatbot Earned трав. 11, 2025 EDT
Machine Learning Operations (MLOps) for Generative AI Earned квіт. 16, 2025 EDT
Принципи відповідального використання ШІ для розробників: конфіденційність і безпека Earned квіт. 15, 2025 EDT
Принципи відповідального використання ШІ для розробників: інтерпретованість і прозорість Earned бер. 23, 2025 EDT
Принципи відповідального використання ШІ для розробників: об’єктивність і упередженість Earned бер. 13, 2025 EDT
Inspect Rich Documents with Gemini Multimodality and Multimodal RAG Earned бер. 11, 2025 EDT
Vector Search and Embeddings Earned бер. 5, 2025 EST
Introduction to Vertex AI Studio Earned лют. 9, 2025 EST
Create Image Captioning Models Earned січ. 26, 2025 EST
Transformer Models and BERT Model Earned січ. 26, 2025 EST
Encoder-Decoder Architecture Earned січ. 21, 2025 EST
Attention Mechanism Earned січ. 21, 2025 EST
Introduction to Image Generation Earned січ. 21, 2025 EST
Responsible AI: Applying AI Principles with Google Cloud - Yкраїнська Earned вер. 10, 2024 EDT
Prompt Design in Vertex AI Earned вер. 9, 2024 EDT
Introduction to Responsible AI - Українська Earned вер. 9, 2024 EDT
Introduction to Large Language Models - Українська Earned вер. 9, 2024 EDT
Introduction to Generative AI - Українська Earned вер. 9, 2024 EDT
Gemini in Google Meet Earned серп. 15, 2024 EDT
Gemini in Google Sheets Earned серп. 15, 2024 EDT
Gemini in Google Slides Earned серп. 15, 2024 EDT
Gemini in Google Docs Earned серп. 15, 2024 EDT
Gemini in Gmail Earned серп. 9, 2024 EDT
Introduction to Gemini for Google Workspace Earned серп. 9, 2024 EDT
Scaling with Google Cloud Operations Earned черв. 12, 2024 EDT
Trust and Security with Google Cloud Earned черв. 4, 2024 EDT
Modernize Infrastructure and Applications with Google Cloud Earned трав. 23, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned квіт. 30, 2024 EDT
Exploring Data Transformation with Google Cloud Earned квіт. 10, 2024 EDT
Digital Transformation with Google Cloud Earned квіт. 4, 2024 EDT
DEPRECATED Build and Deploy Machine Learning Solutions on Vertex AI Earned лист. 30, 2023 EST
Підготовка даних для інтерфейсів API машинного навчання в Google Cloud Earned лист. 28, 2023 EST
ML Pipelines on Google Cloud Earned лист. 27, 2023 EST
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned лист. 23, 2023 EST
Machine Learning Operations (MLOps): Getting Started Earned лист. 20, 2023 EST
Recommendation Systems on Google Cloud Earned лист. 17, 2023 EST
Natural Language Processing on Google Cloud Earned лист. 15, 2023 EST
Computer Vision Fundamentals with Google Cloud Earned лист. 10, 2023 EST
Production Machine Learning Systems Earned лист. 8, 2023 EST
Machine Learning in the Enterprise Earned лист. 3, 2023 EDT
Feature Engineering Earned лист. 1, 2023 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned жовт. 28, 2023 EDT
Launching into Machine Learning Earned жовт. 24, 2023 EDT
Introduction to AI and Machine Learning on Google Cloud Earned жовт. 20, 2023 EDT
Analyzing and Visualizing Data in Looker Earned жовт. 11, 2023 EDT
Introduction to Data Analytics on Google Cloud Earned жовт. 6, 2023 EDT

This course reviews the essential security features of Model Armor and equips you to work with the service. You’ll learn about the security risks associated with LLMs and how Model Armor protects your AI applications.

Докладніше

Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.

Докладніше

This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.

Докладніше

In this course, you'll learn about Google Vids, an online video creation and editing app available to select Google Workspace users. Through lessons and demos, you'll learn how to build and tell compelling stories through video at work. You'll also discover how to seamlessly incorporate media, audio and video clips, customize styles, and easily share your creations. Some Vids features use generative AI to help you work more efficiently. Remember, generative AI tools including Gemini, may suggest inaccurate or inappropriate information. Don’t rely on Gemini features as medical, legal, financial or other professional advice. It’s also important to remember that the Gemini feature suggestions don’t represent Google’s views, and should not be attributed to Google.

Докладніше

Gemini for Google Workspace provides users with access to generative AI features. This course delves into the capabilities of Gemini in Google Drive using video lessons, hands-on activities and practical examples. By the end of this course, you'll be equipped with the knowledge and skills to confidently utilize Gemini in Google Drive to improve your workflows.

Докладніше

Gen AI Agents: Transform Your Organization is the fifth and final course of the Gen AI Leader learning path. This course explores how organizations can use custom gen AI agents to help tackle specific business challenges. You gain hands-on practice building a basic gen AI agent, while exploring the components of these agents, such as models, reasoning loops, and tools.

Докладніше

Transform Your Work With Gen AI Apps is the fourth course of the Gen AI Leader learning path. This course introduces Google’s gen AI applications, such as Google Workspace with Gemini and NotebookLM. It guides you through concepts like grounding, retrieval augmented generation, constructing effective prompts and building automated workflows.

Докладніше

Gen AI: Navigate the Landscape is the third course of the Gen AI Leader learning path. Gen AI is changing how we work and interact with the world around us. But as a leader, how can you harness its power to drive real business outcomes? In this course, you explore the different layers of building gen AI solutions, Google Cloud’s offerings, and the factors to consider when selecting a solution.

Докладніше

Gen AI: Unlock Foundational Concepts is the second course of the Gen AI Leader learning path. In this course, you unlock the foundational concepts of generative AI by exploring the differences between AI, ML, and gen AI, and understanding how various data types enable generative AI to address business challenges. You also gain insights into Google Cloud strategies to address the limitations of foundation models and the key challenges for responsible and secure AI development and deployment.

Докладніше

Gen AI: Beyond the Chatbot is the first course of the Gen AI Leader learning path and has no prerequisites. This course aims to move beyond the basic understanding of chatbots to explore the true potential of generative AI for your organization. You explore concepts like foundation models and prompt engineering, which are crucial for leveraging the power of gen AI. The course also guides you through important considerations you should make when developing a successful gen AI strategy for your organization.

Докладніше

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Докладніше

Під час цього курсу ви ознайомитеся з важливими темами, що стосуються конфіденційності й безпеки в системах ШІ. Ви дізнаєтеся про практичні методи й інструменти, які дають змогу застосувати рекомендації щодо конфіденційності й безпеки в системах ШІ за допомогою продуктів Google Cloud і інструментів із відкритим кодом.

Докладніше

У цьому курсі розглядаються поняття інтерпретованості й прозорості штучного інтелекту, а також їх важливість для розробників. Ви дізнаєтеся про практичні методи й інструменти, які дають змогу досягти інтерпретованості й прозорості даних і моделей штучного інтелекту.

Докладніше

Під час цього курсу ви зможете ознайомитися з концепціями відповідального підходу й принципами щодо штучного інтелекту. Ви дізнаєтеся про практичні методи виявлення об’єктивності й упередженості в роботі ШІ та технологій машинного навчання, а також ознайомитеся зі способами мінімізувати упередженість. У курсі розглядаються практичні методи й інструменти для впровадження відповідального підходу до ШІ за допомогою продуктів Google Cloud і інструментів із відкритим кодом.

Докладніше

Complete the intermediate Inspect Rich Documents with Gemini Multimodality and Multimodal RAG skill badge course to demonstrate skills in the following: using multimodal prompts to extract information from text and visual data, generating a video description, and retrieving extra information beyond the video using multimodality with Gemini; building metadata of documents containing text and images, getting all relevant text chunks, and printing citations by using Multimodal Retrieval Augmented Generation (RAG) with Gemini.

Докладніше

Explore AI-powered search technologies, tools, and applications in this course. Learn semantic search utilizing vector embeddings, hybrid search combining semantic and keyword approaches, and retrieval-augmented generation (RAG) minimizing AI hallucinations as a grounded AI agent. Gain practical experience with Vertex AI Vector Search to build your intelligent search engine.

Докладніше

This course introduces Vertex AI Studio, a tool to interact with generative AI models, prototype business ideas, and launch them into production. Through an immersive use case, engaging lessons, and a hands-on lab, you’ll explore the prompt-to-product lifecycle and learn how to leverage Vertex AI Studio for Gemini multimodal applications, prompt design, prompt engineering, and model tuning. The aim is to enable you to unlock the potential of gen AI in your projects with Vertex AI Studio.

Докладніше

This course teaches you how to create an image captioning model by using deep learning. You learn about the different components of an image captioning model, such as the encoder and decoder, and how to train and evaluate your model. By the end of this course, you will be able to create your own image captioning models and use them to generate captions for images

Докладніше

This course introduces you to the Transformer architecture and the Bidirectional Encoder Representations from Transformers (BERT) model. You learn about the main components of the Transformer architecture, such as the self-attention mechanism, and how it is used to build the BERT model. You also learn about the different tasks that BERT can be used for, such as text classification, question answering, and natural language inference.This course is estimated to take approximately 45 minutes to complete.

Докладніше

This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.

Докладніше

This course will introduce you to the attention mechanism, a powerful technique that allows neural networks to focus on specific parts of an input sequence. You will learn how attention works, and how it can be used to improve the performance of a variety of machine learning tasks, including machine translation, text summarization, and question answering. This course is estimated to take approximately 45 minutes to complete.

Докладніше

This course introduces diffusion models, a family of machine learning models that recently showed promise in the image generation space. Diffusion models draw inspiration from physics, specifically thermodynamics. Within the last few years, diffusion models became popular in both research and industry. Diffusion models underpin many state-of-the-art image generation models and tools on Google Cloud. This course introduces you to the theory behind diffusion models and how to train and deploy them on Vertex AI.

Докладніше

Що більше штучний інтелект і машинне навчання використовуються в корпоративних середовищах, то нагальнішою стає потреба розробити принципи відповідального ставлення до них. Однак говорити про принципи відповідального використання штучного інтелекту легше, ніж застосовувати їх на практиці. Цей курс допоможе вам дізнатись, як запровадити відповідальну роботу зі штучним інтелектом у вашій організації. У цьому курсі ви дізнаєтеся про підхід Google Cloud до відповідального використання ШІ, а також отримаєте практичні поради й набудете досвіду, який допоможе вам розробити власний підхід до цього завдання.

Докладніше

Complete the introductory Prompt Design in Vertex AI skill badge to demonstrate skills in the following: prompt engineering, image analysis, and multimodal generative techniques, within Vertex AI. Discover how to craft effective prompts, guide generative AI output, and apply Gemini models to real-world marketing scenarios.

Докладніше

Це ознайомлювальний курс мікронавчання, який має пояснити, що таке відповідальне використання штучного інтелекту, чому воно важливе і як компанія Google реалізує його у своїх продуктах. Крім того, у цьому курсі викладено 7 принципів Google щодо штучного інтелекту.

Докладніше

У цьому ознайомлювальному курсі мікронавчання ви дізнаєтеся, що таке великі мовні моделі, де вони використовуються і як підвищити їх ефективність коригуванням запитів. Він також охоплює інструменти Google, які допоможуть вам створювати власні додатки на основі генеративного штучного інтелекту.

Докладніше

Це ознайомлювальний курс мікронавчання, який має пояснити, що таке генеративний штучний інтелект, як він використовується й чим відрізняється від традиційних методів машинного навчання. Він також охоплює інструменти Google, які допоможуть вам створювати власні додатки на основі генеративного штучногоінтелекту.

Докладніше

Gemini for Google Workspace provides customers with access to generative AI features. This course delves into the capabilities of Gemini in Google Meet. Through video lessons, hands-on activities and practical examples, you will gain a comprehensive understanding of the Gemini features in Google Meet. You learn how to use Gemini to generate background images, improve your video quality, and translate captions. By the end of this course, you'll be equipped with the knowledge and skills to confidently utilize Gemini in Google Meet to maximize the effectiveness of your video conferences.

Докладніше

Gemini for Google Workspace provides customers with generative AI features in Google Workspace. In this mini-course, you learn about the key features of Gemini and how they can be used to improve productivity and efficiency in Google Sheets.

Докладніше

Gemini for Google Workspace provides customers with generative AI features in Google Workspace. In this mini-course, you learn about the key features of Gemini and how they can be used to improve productivity and efficiency in Google Slides.

Докладніше

Gemini for Google Workspace provides customers with access to generative AI features. This course delves into the capabilities of Gemini in Google Docs using video lessons, hands-on activities and practical examples. You learn how to use Gemini to generate written content based on prompts. You also explore using Gemini to edit text you’ve already written, helping you improve your overall productivity. By the end of this course, you'll be equipped with the knowledge and skills to confidently utilize Gemini in Google Docs to improve your writing.

Докладніше

Gemini for Google Workspace provides customers with generative AI features in Google Workspace. In this mini-course, you learn about the key features of Gemini and how they can be used to improve productivity and efficiency in Gmail.

Докладніше

Gemini for Google Workspace provides customers with generative AI features in Google Workspace. In this learning path, you learn about the key features of Gemini and how they can be used to improve productivity and efficiency in Google Workspace.

Докладніше

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Докладніше

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

Докладніше

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.

Докладніше

Пройдіть вступний кваліфікаційний курс Підготовка даних для інтерфейсів API машинного навчання в Google Cloud, щоб продемонструвати свої навички щодо очистки даних за допомогою сервісу Dataprep by Trifacta, запуску конвеєрів даних у Dataflow, створення кластерів і запуску завдань Apache Spark у Dataproc, а також виклику API машинного навчання, зокрема Cloud Natural Language API, Google Cloud Speech-to-Text API і Video Intelligence API.

Докладніше

In this course, you will be learning from ML Engineers and Trainers who work with the state-of-the-art development of ML pipelines here at Google Cloud. The first few modules will cover about TensorFlow Extended (or TFX), which is Google’s production machine learning platform based on TensorFlow for management of ML pipelines and metadata. You will learn about pipeline components and pipeline orchestration with TFX. You will also learn how you can automate your pipeline through continuous integration and continuous deployment, and how to manage ML metadata. Then we will change focus to discuss how we can automate and reuse ML pipelines across multiple ML frameworks such as tensorflow, pytorch, scikit learn, and xgboost. You will also learn how to use another tool on Google Cloud, Cloud Composer, to orchestrate your continuous training pipelines. And finally, we will go over how to use MLflow for managing the complete machine learning life cycle.

Докладніше

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Докладніше

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Докладніше

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Докладніше

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Докладніше

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Докладніше

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Докладніше

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Докладніше

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Докладніше

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Докладніше

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Докладніше

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Докладніше

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

Докладніше

In this beginner-level course, you will learn about the Data Analytics workflow on Google Cloud and the tools you can use to explore, analyze, and visualize data and share your findings with stakeholders. Using a case study along with hands-on labs, lectures, and quizzes/demos, the course will demonstrate how to go from raw datasets to clean data to impactful visualizations and dashboards. Whether you already work with data and want to learn how to be successful on Google Cloud, or you’re looking to progress in your career, this course will help you get started. Almost anyone who performs or uses data analysis in their work can benefit from this course.

Докладніше