Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Alex Caian

Date d'abonnement : 2023

Ligue de Diamant

62196 points
Model Armor : sécuriser les déploiements d'IA Earned sept. 26, 2025 EDT
Présentation de la sécurité dans le monde de l'IA Earned sept. 24, 2025 EDT
Machine Learning Operations (MLOps) avec Vertex AI : évaluation des modèles Earned sept. 24, 2025 EDT
Créer des vidéos captivantes avec Google Vids Earned sept. 22, 2025 EDT
Gemini dans Google Drive Earned sept. 22, 2025 EDT
Agents d'IA générative : transformer l'entreprise Earned mai 23, 2025 EDT
Applications d'IA générative : changez votre façon de travailler Earned mai 20, 2025 EDT
IA générative : se familiariser avec le domaine Earned mai 13, 2025 EDT
IA générative : découvrir les concepts fondamentaux Earned mai 13, 2025 EDT
IA générative : au-delà du chatbot Earned mai 11, 2025 EDT
Machine Learning Operations (MLOps) pour l'IA générative Earned avr. 16, 2025 EDT
IA responsable pour les développeurs : confidentialité et sécurité Earned avr. 15, 2025 EDT
IA responsable pour les développeurs : interprétabilité et transparence Earned mars 23, 2025 EDT
IA responsable pour les développeurs : équité et biais Earned mars 13, 2025 EDT
Inspecter des documents enrichis avec Gemini multimodal et le RAG multimodal Earned mars 11, 2025 EDT
Recherche vectorielle et embeddings Earned mars 5, 2025 EST
Introduction à Vertex AI Studio Earned fév. 9, 2025 EST
Créer des modèles de création de légendes pour les images Earned jan. 26, 2025 EST
Modèles Transformer et modèle BERT Earned jan. 26, 2025 EST
Architecture encodeur/décodeur Earned jan. 21, 2025 EST
Mécanisme d'attention Earned jan. 21, 2025 EST
Introduction à la génération d'images Earned jan. 21, 2025 EST
IA responsable : appliquer les principes concernant l'IA avec Google Cloud Earned sept. 10, 2024 EDT
Conception de requêtes dans Vertex AI Earned sept. 9, 2024 EDT
Introduction à l'IA responsable Earned sept. 9, 2024 EDT
Présentation des grands modèles de langage Earned sept. 9, 2024 EDT
Présentation de l'IA générative Earned sept. 9, 2024 EDT
Gemini dans Google Meet Earned août 15, 2024 EDT
Gemini dans Google Sheets Earned août 15, 2024 EDT
Gemini dans Google Slides Earned août 15, 2024 EDT
Gemini dans Google Docs Earned août 15, 2024 EDT
Gemini dans Gmail Earned août 9, 2024 EDT
Introduction à Gemini pour Google Workspace Earned août 9, 2024 EDT
Scaling avec la suite Google Cloud Operations Earned juin 12, 2024 EDT
Confiance et sécurité avec Google Cloud Earned juin 4, 2024 EDT
Moderniser l'infrastructure et les applications avec Google Cloud Earned mai 23, 2024 EDT
Innover avec l'intelligence artificielle de Google Cloud Earned avr. 30, 2024 EDT
Explorer la transformation des données avec Google Cloud Earned avr. 10, 2024 EDT
La transformation numérique avec Google Cloud Earned avr. 4, 2024 EDT
Créer et déployer des solutions de machine learning sur Vertex Earned nov. 30, 2023 EST
Préparer des données pour les API de ML sur Google Cloud Earned nov. 28, 2023 EST
ML Pipelines on Google Cloud - Français Earned nov. 27, 2023 EST
Machine Learning Operations (MLOps) avec Vertex AI : gérer les caractéristiques Earned nov. 23, 2023 EST
Machine Learning Operations (MLOps) : premiers pas Earned nov. 20, 2023 EST
Recommendation Systems on Google Cloud Earned nov. 17, 2023 EST
Natural Language Processing on Google Cloud Earned nov. 15, 2023 EST
Computer Vision Fundamentals with Google Cloud Earned nov. 10, 2023 EST
Systèmes de machine learning de production Earned nov. 8, 2023 EST
Machine learning au sein de l'entreprise Earned nov. 3, 2023 EDT
Ingénierie des caractéristiques Earned nov. 1, 2023 EDT
Créer, entraîner et déployer des modèles de ML avec Keras sur Google Cloud Earned oct. 28, 2023 EDT
Launching into Machine Learning - Français Earned oct. 24, 2023 EDT
Présentation de l'IA et du machine learning sur Google Cloud Earned oct. 20, 2023 EDT
Analyzing and Visualizing Data in Looker Earned oct. 11, 2023 EDT
Introduction à l'analyse de données sur Google Cloud Earned oct. 6, 2023 EDT

Ce cours passe en revue les fonctionnalités de sécurité essentielles de Model Armor et vous prépare à utiliser le service. Vous découvrirez les risques de sécurité associés aux LLM et comment Model Armor protège vos applications d'IA.

En savoir plus

L'intelligence artificielle (IA) offre des possibilités de transformation, mais elle présente également de nouveaux enjeux de sécurité. Ce cours apporte aux responsables de la sécurité et de la protection des données des stratégies pour gérer l'IA de façon sécurisée dans leurs organisations. Découvrez un framework pour identifier et atténuer de manière proactive les risques spécifiques à l'IA, protéger les données sensibles, assurer la conformité et construire une infrastructure d'IA résiliente. Choisissez des cas d'utilisation dans quatre secteurs d'activité différents pour savoir comment ces stratégies s'appliquent dans des scénarios réels.

En savoir plus

Ce cours apporte aux professionnels du machine learning les techniques, les bonnes pratiques et les outils essentiels pour évaluer les modèles d'IA prédictive et générative. L'évaluation des modèles est primordiale pour s'assurer que les systèmes de ML fournissent des résultats fiables, précis et de haut niveau en production. Les participants acquerront une connaissance approfondie de diverses métriques et méthodologies d'évaluation, ainsi que de leur application appropriée dans différents types de modèles et tâches. Le cours mettra l'accent sur les défis uniques posés par les modèles d'IA générative et proposera des stratégies pour les relever efficacement. Grâce à la plate-forme Vertex AI de Google Cloud, les participants apprendront à implémenter des processus d'évaluation rigoureux pour la sélection, l'optimisation et la surveillance continue des modèles.

En savoir plus

Dans ce cours, vous découvrirez Google Vids, une application de création et de montage de vidéos en ligne accessible à certains utilisateurs de Google Workspace. À travers des leçons et des démonstrations, vous apprendrez à créer et à raconter des histoires captivantes en vidéo pour le travail. Vous verrez également comment intégrer de manière fluide des éléments multimédias, des extraits audio et vidéo, personnaliser les styles et partager facilement vos créations. Certaines fonctionnalités Vids utilisent l'IA générative pour vous aider à travailler plus efficacement. Pour rappel, les outils d'IA générative, Gemini compris, peuvent suggérer des informations inexactes ou inappropriées. Vous ne devez pas considérer les réponses générées par Gemini et ses fonctionnalités comme des conseils médicaux, juridiques, financiers ou de toute autre nature professionnelle. Sachez aussi que les suggestions des fonctionnalités de Gemini ne représentent pas l'opinion de Google et ne doivent pas être…

En savoir plus

Gemini pour Google Workspace est un module complémentaire qui permet aux utilisateurs d'accéder à des fonctionnalités d'IA générative. Ce cours explore les fonctionnalités de Gemini dans Google Drive au moyen de vidéos pédagogiques, d'activités pratiques et d'exemples concrets. À la fin de ce cours, vous disposerez des connaissances et des compétences nécessaires pour utiliser Gemini en toute confiance dans Google Drive afin d'améliorer vos workflows.

En savoir plus

Le cours "Agents d'IA générative : transformer l'entreprise" est le cinquième et dernier du parcours de formation "Leader en IA générative". Ce cours aborde la façon dont les entreprises peuvent utiliser des agents d'IA générative personnalisés pour relever des défis métier spécifiques. Des exercices pratiques vous apprendront à créer un agent d'IA générative de base tout en découvrant les composants de ces agents, comme les modèles, les boucles de raisonnement et les outils.

En savoir plus

Le cours "Applications d'IA générative : changez votre façon de travailler" est le quatrième du parcours de formation "Leader en IA générative". Ce cours présente les applications d'IA générative de Google, telles que Gemini pour Workspace et NotebookLM. Il vous guide à travers des concepts comme l'ancrage, la génération augmentée par récupération, la création de requêtes efficaces et la conception de workflows automatisés.

En savoir plus

Le cours "IA générative : se familiariser avec le domaine" est le troisième du parcours de formation "Leader en IA générative". L'IA générative change notre façon de travailler et d'interagir avec le monde autour de nous. En tant que responsable, comment pouvez-vous exploiter son potentiel pour obtenir des résultats commerciaux concrets ? Dans ce cours, vous allez découvrir les différentes couches qui composent une solution d'IA générative, les offres de Google Cloud et les facteurs à prendre en compte au moment de choisir une solution.

En savoir plus

Le cours "IA générative : découvrir les concepts fondamentaux" est le deuxième du parcours de formation "Leader en IA générative". Ce cours vous permettra de découvrir les concepts fondamentaux de l'IA générative en examinant les différences entre l'IA, le ML et l'IA générative. Vous comprendrez également comment l'IA générative permet de relever les défis métier à l'aide des différents types de données. Enfin, vous découvrirez les stratégies de Google Cloud pour gérer les limites des modèles de fondation et quelles sont les grandes problématiques du développement et du déploiement d'une IA responsable et sécurisée.

En savoir plus

Le cours "IA générative : au-delà du chatbot" est le premier du parcours de formation "Leader en IA générative" et n'a aucun prérequis. Ce cours vise à approfondir votre compréhension de base des chatbots afin de révéler le véritable potentiel de l'IA générative pour votre entreprise. Vous découvrirez des concepts tels que les modèles de fondation et le prompt engineering (ingénierie des requêtes), qui sont essentiels pour exploiter toute la puissance de l'IA générative. Ce cours vous aidera également à identifier les facteurs à prendre en compte pour développer une stratégie d'IA générative efficace pour votre entreprise.

En savoir plus

Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.

En savoir plus

Ce cours présente des points importants au sujet de la confidentialité et de la sécurité de l'IA. Vous découvrirez des méthodes pratiques et des outils pour mettre en place des pratiques recommandées de confidentialité et de sécurité de l'IA à l'aide de produits Google Cloud et d'outils Open Source.

En savoir plus

Ce cours présente les concepts d'interprétabilité et de transparence de l'IA. Il explique en quoi la transparence de l'IA est importante pour les développeurs et les ingénieurs. Il explore des méthodes et des outils pratiques permettant d'atteindre l'interprétabilité et la transparence des modèles d'IA et des données.

En savoir plus

Ce cours présente le concept d'IA responsable et les principes associés. Il met en avant des techniques permettant d'identifier des données équitables ou biaisées, et de limiter les biais lors de l'utilisation de l'IA/du ML. Vous découvrirez des méthodes pratiques et des outils pour mettre en place de bonnes pratiques d'IA responsable à l'aide des produits Google Cloud et des outils Open Source.

En savoir plus

Terminez le cours intermédiaire Inspecter des documents enrichis avec Gemini multimodal et le RAG multimodal pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'utilisation de requêtes multimodales pour extraire des informations de données textuelles et visuelles, la génération d'une description vidéo et la récupération d'informations qui ne sont pas incluses dans une vidéo en utilisant la multimodalité avec Gemini ; la création de métadonnées de documents contenant du texte et des images, la collecte de tous les éléments de texte pertinents, et l'impression de citations à l'aide de la génération augmentée par récupération (RAG, Retrieval Augmented Generation) multimodale avec Gemini. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et …

En savoir plus

Avec ce cours, explorez les technologies de recherche, les outils et les applications optimisés par l'IA. Découvrez la recherche sémantique, qui utilise les embeddings vectoriels (ou "plongements vectoriels"), la recherche hybride, qui combine les approches sémantique et par mots-clés, et la génération augmentée par récupération (RAG), qui réduit les hallucinations générées par l'IA en agissant comme un agent ancré. Enfin, acquérez une expérience pratique de Vertex AI Vector Search afin de créer votre moteur de recherche intelligent.

En savoir plus

Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.

En savoir plus

Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.

En savoir plus

Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.

En savoir plus

Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.

En savoir plus

Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.

En savoir plus

Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.

En savoir plus

Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.

En savoir plus

Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Gemini pour Google Workspace est un module complémentaire qui permet aux utilisateurs d'accéder à des fonctionnalités d'IA générative. Ce cours explore les fonctionnalités de Gemini dans Google Meet. Au moyen de vidéos pédagogiques, d'activités pratiques et d'exemples concrets, vous allez découvrir les fonctionnalités de Gemini dans Google Meet. Vous allez apprendre à utiliser Gemini pour générer des images d'arrière-plan, améliorer la qualité de la vidéo et traduire des sous-titres. À la fin de ce cours, vous disposerez des connaissances et des compétences nécessaires pour utiliser Gemini en toute confiance dans Google Meet afin d'optimiser l'efficacité de vos visioconférences.

En savoir plus

Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Sheets.

En savoir plus

Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Slides.

En savoir plus

Gemini pour Google Workspace est un module complémentaire qui permet aux utilisateurs d'accéder à des fonctionnalités d'IA générative. Ce cours explore les fonctionnalités de Gemini dans Google Docs au moyen de vidéos pédagogiques, d'activités pratiques et d'exemples concrets. Vous allez apprendre à utiliser Gemini pour générer des contenus écrits basés sur des requêtes. Vous allez également découvrir comment l'utiliser pour modifier du texte que vous avez déjà rédigé, vous aidant ainsi à améliorer votre productivité globale. À la fin de ce cours, vous disposerez des connaissances et des compétences nécessaires pour utiliser Gemini en toute confiance dans Google Docs afin d'améliorer vos écrits.

En savoir plus

Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Gmail.

En savoir plus

Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce parcours de formation, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Workspace.

En savoir plus

Les organisations de toutes tailles exploitent le potentiel et la flexibilité du cloud afin de transformer leurs opérations. Toutefois, la gestion et le scaling des ressources cloud peuvent s'avérer complexes. "Scaling avec la suite Google Cloud Operations" présente les concepts fondamentaux des opérations modernes, de la fiabilité et de la résilience dans le cloud, ainsi que la manière dont Google Cloud peut vous aider à atteindre ces objectifs. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.

En savoir plus

Les organisations qui migrent des données et des applications vers le cloud font face à de nouveaux défis en termes de sécurité. Le cours "Confiance et sécurité avec Google Cloud" présente les principes de base de la sécurité dans le cloud, les avantages de l'approche multicouche de Google Cloud concernant la sécurité de l'infrastructure, et la manière dont Google gagne et conserve la confiance des clients vis-à-vis du cloud. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.

En savoir plus

De nombreuses entreprises traditionnelles utilisent d'anciens systèmes et d'anciennes applications qui ne peuvent plus satisfaire les attentes des clients d'aujourd'hui. Les chefs d'entreprise doivent régulièrement choisir entre deux options : entretenir leurs systèmes informatiques vieillissants ou investir dans de nouveaux produits et services. Le cours "Moderniser l'infrastructure et les applications avec Google Cloud" aborde ces problématiques et propose des solutions pour les résoudre à l'aide de la technologie cloud. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.

En savoir plus

L'intelligence artificielle (IA) et le machine learning (ML) représentent une évolution importante de l'informatique et transforment rapidement un grand nombre de secteurs. Le cours "Innover avec l'intelligence artificielle de Google Cloud" explore comment les organisations peuvent utiliser l'IA et le ML pour repenser leurs processus métier. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.

En savoir plus

La technologie cloud est une grande source de valeur pour les entreprises. En combinant le potentiel de cette technologie avec celui des données, il est possible de créer encore plus de valeur et d'offrir de nouvelles expériences client. "Explorer la transformation des données avec Google Cloud" vous fait découvrir la valeur que les données peuvent apporter à une entreprise et les façons dont Google Cloud peut les rendre utiles et accessibles. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il a pour but d'aider les participants à évoluer dans leur poste et à façonner l'avenir de leur entreprise.

En savoir plus

La technologie cloud et la transformation numérique suscitent beaucoup d'enthousiasme, mais elles génèrent aussi souvent beaucoup de questions laissées sans réponse. Par exemple : Qu'est-ce que la technologie cloud ? Qu'entend-on par transformation numérique ? Que peut vous apporter la technologie cloud ? Et par où commencer ? Si vous vous êtes déjà posé une de ces questions, vous êtes au bon endroit. Ce cours offre un aperçu des opportunités et des défis que les entreprises peuvent rencontrer lors de leur transformation numérique. Si vous souhaitez découvrir les technologies cloud afin de pouvoir exceller dans votre rôle et contribuer à bâtir l'avenir de votre entreprise, ce cours d'introduction sur la transformation numérique est pour vous. Il fait partie du parcours de formation Cloud Digital Leader.

En savoir plus

Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.

En savoir plus

Dans ce cours, vous profiterez de l'expérience d'ingénieurs et de formateurs en ML qui développent des pipelines de ML chez Google Cloud à l'aide de technologies de pointe. Les premiers modules porteront sur TensorFlow Extended (TFX), la plate-forme Google de machine learning de production basée sur TensorFlow et conçue pour gérer des pipelines et des métadonnées de ML. Vous explorerez les composants de pipelines et apprendrez à orchestrer des pipelines avec TFX. Vous verrez également comment automatiser vos pipelines au moyen d'une intégration et d'un déploiement continus, et comment gérer des métadonnées de ML. Ensuite, nous découvrirons comment automatiser et réutiliser des pipelines de ML sur plusieurs frameworks de ML tels que TensorFlow, PyTorch, scikit-learn et XGBoost. Vous apprendrez également à utiliser Cloud Composer, un autre outil Google Cloud, pour orchestrer vos pipelines d'entraînement continu. Enfin, nous verrons comment utiliser MLflow pour gérer l'ensemble du cycle d…

En savoir plus

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les participants s'entraîneront à utiliser l'ingestion en flux continu de Vertex AI Feature Store au niveau du SDK.

En savoir plus

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.

En savoir plus

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

En savoir plus

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

En savoir plus

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

En savoir plus

Dans ce cours, nous abordons en détail les composants et les bonnes pratiques de construction de systèmes de ML hautes performances dans des environnements de production. Nous verrons aussi certaines des considérations les plus courantes concernant la construction de ces systèmes, telles que l'entraînement statique, l'entraînement dynamique, l'inférence statique, l'inférence dynamique, les tâches TensorFlow distribuées et les TPU. Ce cours a pour objectif d'explorer les caractéristiques d'un bon système de ML, au-delà de sa capacité à effectuer des prédictions correctes.

En savoir plus

Ce cours présente une approche pratique du workflow de ML avec une étude de cas dans laquelle une équipe est confrontée à plusieurs exigences métier et cas d'utilisation de ML. Cette équipe doit comprendre quels outils sont nécessaires pour gérer et gouverner les données, et trouver la meilleure approche pour les prétraiter. On présente à cette équipe trois options de création de modèles de ML pour deux cas d'utilisation spécifiques. Ce cours explique pourquoi l'équipe tire parti des avantages d'AutoML, de BigQuery ML ou de l'entraînement personnalisé pour atteindre ses objectifs.

En savoir plus

Ce cours présente les avantages liés à l'utilisation de Vertex AI Feature Store, ainsi que la manière d'améliorer la précision des modèles de ML et de déterminer les colonnes de données présentant les caractéristiques les plus utiles. Ce cours inclut également du contenu et des ateliers portant sur l'ingénierie des caractéristiques à l'aide de BigQuery ML, Keras et TensorFlow.

En savoir plus

Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.

En savoir plus

Le cours commence par une discussion sur les données : vous découvrirez comment améliorer leur qualité et effectuer des analyses exploratoires. Ensuite, nous vous présenterons Vertex AI AutoML et vous expliquerons comment créer, entraîner et déployer un modèle de machine learning (ML) sans écrire une ligne de code. Vous découvrirez également les avantages de BigQuery ML. Enfin, nous verrons comment optimiser un modèle de ML, et en quoi la généralisation ainsi que l'échantillonnage peuvent vous aider à évaluer la qualité des modèles de ML destinés à un entraînement personnalisé.

En savoir plus

Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.

En savoir plus

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

En savoir plus

Dans ce cours de niveau débutant, vous découvrirez le workflow d'analyse de données sur Google Cloud, ainsi que les outils que vous pouvez utiliser pour explorer, analyser et visualiser les données, et partager vos observations avec les personnes concernées. Grâce à une étude de cas, des ateliers pratiques, des leçons et des quiz/démos, ce cours vous montrera comment transformer des ensembles de données bruts en données exploitables dans des visualisations et des tableaux de bord percutants. Que vous travailliez déjà avec des données et souhaitiez apprendre à mettre Google Cloud pleinement à profit ou que vous cherchiez à progresser dans votre carrière, ce cours vous sera utile. La plupart des personnes qui effectuent ou utilisent des analyses de données dans leur travail en tireront des enseignements.

En savoir plus