Teilnehmen Anmelden

Ihre Kompetenzen in der Google Cloud Console anwenden

Alex Caian

Mitglied seit 2023

Diamond League

62196 Punkte
Model Armor: KI-Bereitstellungen absichern Earned Sep 26, 2025 EDT
Einführung in Sicherheitskonzepte in der Welt der KI Earned Sep 24, 2025 EDT
Machine Learning Operations (MLOps) mit Vertex AI: Modellbewertung Earned Sep 24, 2025 EDT
Mit Google Vids ansprechende Videos erstellen Earned Sep 22, 2025 EDT
Gemini in Google Drive Earned Sep 22, 2025 EDT
Ihre Organisation mit generativen KI-Agenten voranbringen Earned Mai 23, 2025 EDT
Generative KI-Apps heben Ihre Arbeit auf das nächste Level Earned Mai 20, 2025 EDT
Die vielfältigen Formen generativer KI Earned Mai 13, 2025 EDT
Generative KI: Grundlegende Konzepte Earned Mai 13, 2025 EDT
Generative KI ist mehr als nur Chatbots Earned Mai 11, 2025 EDT
Machine Learning Operations (MLOps) für generative KI Earned Apr 16, 2025 EDT
Verantwortungsbewusste Anwendung von KI für Entwickler: Datenschutz und Sicherheit Earned Apr 15, 2025 EDT
Verantwortungsbewusste Anwendung von KI für Entwickler: Interpretierbarkeit und Transparenz Earned Mär 23, 2025 EDT
Verantwortungsbewusste Anwendung von KI für Entwickler: Fairness und Bias Earned Mär 13, 2025 EDT
Rich-Dokumente mit Gemini Multimodal und Multimodal RAG untersuchen Earned Mär 11, 2025 EDT
Vektorsuche und Einbettungen Earned Mär 5, 2025 EST
Einführung in Vertex AI Studio Earned Feb 9, 2025 EST
Modelle zur Bilduntertitelung erstellen Earned Jan 26, 2025 EST
Transformer-Modelle und BERT-Modell Earned Jan 26, 2025 EST
Encoder-Decoder-Architektur Earned Jan 21, 2025 EST
Aufmerksamkeitsmechanismus Earned Jan 21, 2025 EST
Einstieg in die Bildgenerierung Earned Jan 21, 2025 EST
Verantwortungsbewusste Anwendung von KI: KI-Grundsätze in Google Cloud anwenden Earned Sep 10, 2024 EDT
Prompt-Design mit Vertex AI Earned Sep 9, 2024 EDT
Einführung in die verantwortungsbewusste Anwendung von KI Earned Sep 9, 2024 EDT
Einführung in Large Language Models Earned Sep 9, 2024 EDT
Einführung in generative KI Earned Sep 9, 2024 EDT
Gemini in Google Meet Earned Aug 15, 2024 EDT
Gemini in Google Sheets Earned Aug 15, 2024 EDT
Gemini in Google-Präsentation Earned Aug 15, 2024 EDT
Gemini in Google Docs Earned Aug 15, 2024 EDT
Gemini in Gmail Earned Aug 9, 2024 EDT
Einführung in Gemini für Google Workspace Earned Aug 9, 2024 EDT
Scaling with Google Cloud Operations Earned Jun 12, 2024 EDT
Trust and Security with Google Cloud Earned Jun 4, 2024 EDT
Modernize Infrastructure and Applications with Google Cloud Earned Mai 23, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned Apr 30, 2024 EDT
Exploring Data Transformation with Google Cloud Earned Apr 10, 2024 EDT
Digital Transformation with Google Cloud Earned Apr 4, 2024 EDT
ML-Lösungen mit Vertex AI erstellen und bereitstellen Earned Nov 30, 2023 EST
Daten für ML-APIs in Google Cloud vorbereiten Earned Nov 28, 2023 EST
ML Pipelines on Google Cloud Earned Nov 27, 2023 EST
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Nov 23, 2023 EST
Machine Learning Operations (MLOps): Getting Started Earned Nov 20, 2023 EST
Recommendation Systems on Google Cloud Earned Nov 17, 2023 EST
Natural Language Processing on Google Cloud Earned Nov 15, 2023 EST
Computer Vision Fundamentals with Google Cloud Earned Nov 10, 2023 EST
Production Machine Learning Systems Earned Nov 8, 2023 EST
Machine Learning in the Enterprise Earned Nov 3, 2023 EDT
Feature Engineering Earned Nov 1, 2023 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Okt 28, 2023 EDT
Launching into Machine Learning Earned Okt 24, 2023 EDT
Einführung in KI und maschinelles Lernen in Google Cloud Earned Okt 20, 2023 EDT
Analyzing and Visualizing Data in Looker Earned Okt 11, 2023 EDT
Einführung in die Datenanalyse in Google Cloud Earned Okt 6, 2023 EDT

In diesem Kurs werden die wichtigsten Sicherheitsfunktionen von Model Armor vorgestellt. Außerdem lernen Sie, wie Sie den Dienst nutzen können. Sie erfahren mehr über die Sicherheitsrisiken, die mit LLMs verbunden sind, und wie Model Armor Ihre KI-Anwendungen schützt.

Weitere Informationen

Künstliche Intelligenz (KI) bietet revolutionäre Möglichkeiten, geht aber auch mit neuen Sicherheitsherausforderungen einher. In diesem Kurs lernen Führungskräfte im Bereich Sicherheit und Datenschutz Strategien für den sicheren Umgang mit KI in ihren Unternehmen kennen. Es wird ein Framework für das proaktive Erkennen und Mindern KI-spezifischer Risiken, den Schutz sensibler Daten, das Einhalten rechtlicher Vorgaben und den Aufbau einer robusten KI-Infrastruktur vorgestellt. Anhand von Anwendungsfällen aus vier verschiedenen Branchen wird gezeigt, wie sich diese Strategien auf reale Szenarien anwenden lassen.

Weitere Informationen

Dieser Kurs gibt Machine-Learning-Anwendern alle grundlegenden Tools, Techniken und Best Practices zur Bewertung von generativen und prädiktiven KI-Modellen an die Hand. Die Modellbewertung ist ein wichtiger Schritt, bei dem geprüft wird, ob ML-Systeme in der Produktion zuverlässige, genaue und leistungsstarke Ergebnisse erzielen. Die Teilnehmer erwerben fundierte Kenntnisse über verschiedene Bewertungsmesswerte und -methoden und lernen, sie auf unterschiedliche Modelltypen und Aufgaben anzuwenden. Im Kurs wird schwerpunktmäßig auf die besonderen Herausforderungen generativer KI-Modelle eingegangen und es werden Strategien vorgestellt, wie sich diese effektiv bewältigen lassen. Die Teilnehmer lernen auf der Plattform Vertex AI von Google Cloud, robuste Bewertungsprozesse zur Auswahl, Optimierung und kontinuierlichen Überwachung des Modells zu implementieren.

Weitere Informationen

In diesem Kurs lernen Sie Google Vids kennen, eine App zum Erstellen und Bearbeiten von Videos für ausgewählte Google Workspace-Nutzer. Anhand von Lektionen und Demos erfahren Sie, wie Ihnen mit Videos bei Ihrer Arbeit ansprechendes Storytelling gelingt. Wir zeigen Ihnen außerdem, wie Sie Medien, Audio- und Videoclips nahtlos einbinden, Stile anpassen und Ihre Arbeit ganz einfach teilen können. Einige Vids-Funktionen nutzen generative KI und ermöglichen so effizienteres Arbeiten. Generative KI-Tools wie Gemini können ungenaue oder unangemessene Daten liefern. Verlassen Sie sich nicht auf die Funktionen von Gemini, wenn Sie medizinischen, rechtlichen, finanziellen oder anderen professionellen Rat erhalten möchten. Vorschläge von Gemini-Funktionen spiegeln nicht die Auffassung von Google wider und sollten Google nicht zugeschrieben werden.

Weitere Informationen

Gemini für Google Workspace ermöglicht Nutzern den Zugriff auf generative KI-Funktionen. In diesem Kurs geht es anhand von Videolektionen, praktischen Übungen und Anwendungsbeispielen um die Funktionen von Gemini in Google Drive. Am Ende dieses Kurses können Sie Gemini in Google Drive sicher anwenden und Ihre Workflows damit verbessern.

Weitere Informationen

„Ihre Organisation mit generativen KI-Agenten voranbringen“ ist der fünfte und letzte Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs erfahren Sie, wie Unternehmen mit benutzerdefinierten generativen KI-Agenten spezifische geschäftliche Herausforderungen meistern können. Sie lernen, wie Sie einen einfachen Agenten für generative KI erstellen, und machen sich mit den Komponenten dieser Agenten vertraut, z. B. mit Modellen, Reasoning Loops und Tools.

Weitere Informationen

„Generative KI-Apps heben Ihre Arbeit auf das nächste Level“ ist der vierte Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs werden die auf generativer KI basierenden Anwendungen von Google vorgestellt, zum Beispiel Gemini für Workspace und NotebookLM. Darin werden Konzepte wie Fundierung, Retrieval-Augmented Generation, das Erstellen effektiver Prompts und das Entwickeln automatisierter Workflows erläutert.

Weitere Informationen

„Die vielfältigen Formen generativer KI“ ist der dritte Kurs des Lernpfads „Generative AI Leader“. Generative KI verändert die Art und Weise, wie wir arbeiten und mit der Welt um uns herum interagieren. Aber wie können Sie als Führungskraft die Möglichkeiten von KI nutzen, um echte Geschäftsergebnisse zu erzielen? In diesem Kurs lernen Sie die verschiedenen Ebenen der Entwicklung von generativen KI-Lösungen, die Angebote von Google Cloud und die Faktoren kennen, die bei der Auswahl einer Lösung zu berücksichtigen sind.

Weitere Informationen

„Generative KI: Grundlegende Konzepte“ ist der zweite Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs lernen Sie die grundlegenden Konzepte der generativen KI kennen. Sie erfahren, wie sich KI, ML und generative KI unterscheiden und wie generative KI geschäftliche Herausforderungen mithilfe verschiedener Datentypen bewältigt. Außerdem erhalten Sie Einblicke in die Strategien von Google Cloud, um die Einschränkungen von Foundation Models zu überwinden, und in die wichtigsten Herausforderungen für eine verantwortungsbewusste und sichere KI-Entwicklung und ‑Bereitstellung.

Weitere Informationen

„Generative KI ist mehr als nur Chatbots“ ist der erste Kurs des Lernpfads „Generative AI Leader“ und hat keine Voraussetzungen. In diesem Kurs geht es nicht nur um die Grundlagen von Chatbots, sondern auch um das wahre Potenzial von generativer KI für Ihr Unternehmen. Sie lernen Konzepte wie Foundation Models und Prompt Engineering kennen, die für die Nutzung der Leistungsfähigkeit von generativer KI entscheidend sind. Außerdem werden wichtige Überlegungen behandelt, die Sie bei der Entwicklung einer erfolgreichen Strategie für generative KI für Ihr Unternehmen berücksichtigen sollten.

Weitere Informationen

Dieser Kurs vermittelt Ihnen das Wissen und die nötigen Tools, um die speziellen Herausforderungen zu erkennen, mit denen MLOps-Teams bei der Bereitstellung und Verwaltung von Modellen basierend auf generativer KI konfrontiert sind. Sie erfahren, wie KI-Teams durch Vertex AI dabei unterstützt werden, MLOps-Prozesse zu optimieren und mit Projekten erfolgreich zu sein, in denen generative KI zum Einsatz kommt.

Weitere Informationen

In diesem Kurs werden wichtige Themen zu Datenschutz und Sicherheit beim Einsatz von künstlicher Intelligenz vorgestellt. Dabei lernen Sie, wie Sie mit Google Cloud-Produkten und Open-Source-Tools empfohlene Vorgehensweisen im Zusammenhang mit Datenschutz und Sicherheit beim Einsatz von KI umsetzen.

Weitere Informationen

In diesem Kurs werden Konzepte in Bezug auf die Interpretierbarkeit und Transparenz von künstlicher Intelligenz vorgestellt. Sie erfahren, warum die Transparenz der KI für Entwickler-Teams wichtig ist. Dabei lernen Sie praktische Techniken und Tools kennen, mit denen Sie sowohl die Interpretierbarkeit als auch die Transparenz von Daten und KI-Modellen optimieren können.

Weitere Informationen

In diesem Kurs werden Konzepte für die verantwortungsbewusste Anwendung von KI und KI-Grundsätze vorgestellt. Es werden Techniken behandelt, wie Sie Fairness und Verzerrung (Bias) in der Praxis erkennen sowie Verzerrung in KI- und ML-Anwendungen reduzieren können. Dabei lernen Sie, wie Sie mit Google Cloud-Produkten und Open-Source-Tools Best Practices für eine verantwortungsbewusste Anwendung von KI umsetzen.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Rich-Dokumente mit Gemini Multimodal und Multimodal RAG untersuchen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Verwenden von multimodalen Prompts, um Informationen aus Text- und Bilddaten zu gewinnen; Erstellen einer Videobeschreibung und Abrufen von zusätzlichen, über das Video hinausgehenden Informationen unter Verwendung von Multimodalität mit Gemini; Erstellen von Metadaten von Dokumenten mit Text und Bildern; Ermitteln aller relevanten Textabschnitte und Drucken von Zitationen durch Nutzung von multimodaler Retrieval-Augmented Generation (RAG) mit Gemini. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Sk…

Weitere Informationen

In diesem Kurs lernen Sie KI-basierte Suchtechnologien, Tools und Anwendungen kennen. Er umfasst folgende Themen: die semantische Suche mithilfe von Vektoreinbettungen, die Hybridsuche, bei der semantische und stichwortbezogene Ansätze kombiniert werden, und Retrieval-Augmented Generation (RAG), die KI-Halluzinationen durch einen fundierten KI-Agenten minimiert. Sie sammeln praktische Erfahrungen mit der Vektorsuche in Vertex AI zum Entwickeln einer intelligenten Suchmaschine.

Weitere Informationen

Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für die Interaktion mit generativen KI-Modellen sowie das Prototyping von Geschäftsideen und ihre Umsetzung. Anhand eines eindrucksvollen Anwendungsfalls, ansprechender Lektionen und einer praktischen Übung lernen Sie den Lebenszyklus vom Prompt bis zum Produkt kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design, Prompt Engineering und Modellabstimmung einsetzen können. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial von generativer KI in Ihren Projekten mit Vertex AI Studio ausschöpfen.

Weitere Informationen

In diesem Kurs erfahren Sie, wie Sie mithilfe von Deep Learning ein Modell zur Bilduntertitelung erstellen. Sie lernen die verschiedenen Komponenten eines solchen Modells wie den Encoder und Decoder und die Schritte zum Trainieren und Bewerten des Modells kennen. Nach Abschluss dieses Kurses haben Sie folgende Kompetenzen erworben: Erstellen eigener Modelle zur Bilduntertitelung und Verwenden der Modelle zum Generieren von Untertiteln

Weitere Informationen

Dieser Kurs bietet eine Einführung in die Transformer-Architektur und das BERT-Modell (Bidirectional Encoder Representations from Transformers). Sie lernen die Hauptkomponenten der Transformer-Architektur wie den Self-Attention-Mechanismus kennen und erfahren, wie Sie diesen zum Erstellen des BERT-Modells verwenden. Darüber hinaus werden verschiedene Aufgaben behandelt, für die BERT genutzt werden kann, wie etwa Textklassifizierung, Question Answering und Natural-Language-Inferenz. Der gesamte Kurs dauert ungefähr 45 Minuten.

Weitere Informationen

Dieser Kurs vermittelt Ihnen eine Zusammenfassung der Encoder-Decoder-Architektur, einer leistungsstarken und gängigen Architektur, die bei Sequenz-zu-Sequenz-Tasks wie maschinellen Übersetzungen, Textzusammenfassungen und dem Question Answering eingesetzt wird. Sie lernen die Hauptkomponenten der Encoder-Decoder-Architektur kennen und erfahren, wie Sie diese Modelle trainieren und bereitstellen können. Im dazugehörigen Lab mit Schritt-für-Schritt-Anleitung können Sie in TensorFlow von Grund auf einen Code für eine einfache Implementierung einer Encoder-Decoder-Architektur erstellen, die zum Schreiben von Gedichten dient.

Weitere Informationen

In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.

Weitere Informationen

In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.

Weitere Informationen

Da die Nutzung von künstlicher Intelligenz und Machine Learning in Unternehmen weiter zunimmt, wird auch deren verantwortungsbewusste Entwicklung ein immer wichtigeres Thema. Dabei ist es für viele schwierig, die Überlegungen zur verantwortungsbewussten Anwendung von KI in die Praxis umzusetzen. Wenn Sie wissen möchten, wie sich die verantwortungsbewusste Anwendung von KI in die Praxis umsetzen, also operationalisieren lässt, finden Sie in diesem Kurs entsprechende Hilfestellungen. In diesem Kurs erfahren Sie, wie dies mit Google Cloud heutzutage möglich ist, inklusive entsprechender Best Practices und Erkenntnisse. Es wird gezeigt, welches Framework Google Cloud bietet, um einen eigenen Ansatz für die verantwortungsbewusste Anwendung von KI zu entwickeln.

Weitere Informationen

Mit dem Skill-Logo Prompt-Design mit Vertex AI weisen Sie Grundkenntnisse in folgenden Bereichen nach: Prompt Engineering, Bildanalyse und multimodale generative Techniken in Vertex AI. Entdecken Sie, wie Sie wirksame Prompts erstellen, auf generativer KI basierende Ausgaben steuern und Gemini-Modelle in Marketing-Szenarien aus der Praxis anwenden.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.

Weitere Informationen

Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen. In diesem Kurs geht es um Gemini in Google Meet. Durch Videokurse, praxisorientierte Aktivitäten und praktische Beispiele lernen Sie die Gemini-Funktionen in Google Meet kennen. Sie erfahren, wie Sie mit Gemini Hintergrundbilder generieren, die Videoqualität verbessern und Untertitel übersetzen können. Am Ende dieses Kurses können Sie Gemini in Google Meet sicher anwenden und Videokonferenzen damit noch effektiver durchführen.

Weitere Informationen

Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen in Google Workspace. Dieser Mini-Kurs vermittelt Ihnen die wichtigsten Gemini-Funktionen. Sie erfahren, wie Sie diese Funktionen in Google Sheets einsetzen können, um produktiver und effizienter zu arbeiten.

Weitere Informationen

Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen in Google Workspace. Dieser Mini-Kurs vermittelt Ihnen die wichtigsten Gemini-Funktionen. Sie erfahren, wie Sie diese Funktionen in Google Präsentationen einsetzen können, um produktiver und effizienter zu arbeiten.

Weitere Informationen

Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen. In diesem Kurs geht es anhand von Videolektionen, praktischen Übungen und Anwendungsbeispielen um die Funktionen von Gemini in Google Docs. Sie lernen, wie Sie mit Gemini und Prompts schriftliche Inhalte erstellen. Außerdem erfahren Sie, wie Sie Gemini zum Bearbeiten bereits geschriebener Texte verwenden, um Ihre Gesamtproduktivität zu steigern. Am Ende dieses Kurses können Sie Gemini in Google Docs sicher anwenden und bessere Texte verfassen.

Weitere Informationen

Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen in Google Workspace. Dieser Mini-Kurs vermittelt Ihnen die wichtigsten Gemini-Funktionen. Sie erfahren, wie Sie diese Funktionen in Gmail einsetzen können, um produktiver und effizienter zu arbeiten.

Weitere Informationen

Gemini für Google Workspace ermöglicht Kunden den Zugriff auf generative KI-Funktionen in Google Workspace. Dieser Lernpfad vermittelt Ihnen die wichtigsten Gemini-Funktionen. Sie erfahren, wie Sie diese Funktionen in Google Workspace einsetzen können, um produktiver und effizienter zu arbeiten.

Weitere Informationen

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

Weitere Informationen

Mit dem Skill-Logo zum Kurs ML-Lösungen mit Vertex AI erstellen und bereitstellen weisen Sie fortgeschrittene Kenntnisse nach. Sie lernen in diesem Kurs, wie Sie die Vertex AI-Plattform von Google Cloud, AutoML und benutzerdefinierte Trainingsdienste nutzen, um Machine-Learning-Modelle zu trainieren, zu bewerten, abzustimmen, zu erklären und bereitzustellen. Dieser Kurs richtet sich an professionelle Data Scientists und Machine Learning Engineers. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie diese Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.

Weitere Informationen

In this course, you will be learning from ML Engineers and Trainers who work with the state-of-the-art development of ML pipelines here at Google Cloud. The first few modules will cover about TensorFlow Extended (or TFX), which is Google’s production machine learning platform based on TensorFlow for management of ML pipelines and metadata. You will learn about pipeline components and pipeline orchestration with TFX. You will also learn how you can automate your pipeline through continuous integration and continuous deployment, and how to manage ML metadata. Then we will change focus to discuss how we can automate and reuse ML pipelines across multiple ML frameworks such as tensorflow, pytorch, scikit learn, and xgboost. You will also learn how to use another tool on Google Cloud, Cloud Composer, to orchestrate your continuous training pipelines. And finally, we will go over how to use MLflow for managing the complete machine learning life cycle.

Weitere Informationen

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Weitere Informationen

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Weitere Informationen

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Weitere Informationen

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Weitere Informationen

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Weitere Informationen

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Weitere Informationen

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Weitere Informationen

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Weitere Informationen

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Weitere Informationen

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Weitere Informationen

In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.

Weitere Informationen

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

Weitere Informationen

In diesem Anfängerkurs erhalten Sie Informationen über den Datenanalyse-Workflow in Google Cloud. Außerdem werden Ihnen die verfügbaren Tools zum Auswerten, Analysieren und Visualisieren von Daten sowie zur Freigabe Ihrer gewonnenen Erkenntnisse an Stakeholder vorgestellt. Anhand einer Fallstudie sowie von praxisorientierten Labs, Vorlesungen und Quizzen/Demos zeigt der Kurs, wie Rohdaten bereinigt und daraus wirkungsvolle Visualisierungen und Dashboards erstellt werden. Ganz gleich, ob Sie bereits mit Daten arbeiten und erfahren möchten, wie Sie in Google Cloud erfolgreich sein können, oder ob Sie sich beruflich weiterbilden möchten – dieser Kurs erleichtert Ihnen den Einstieg. Fast jeder, der bei seiner Arbeit Datenanalysen ausführt oder verwendet, kann von diesem Kurs profitieren.

Weitere Informationen