가입 로그인

Google Cloud 콘솔에서 기술 적용

Hamza Mohammed

회원 가입일: 2022

브론즈 리그

6145포인트
프로페셔널 머신러닝 엔지니어 학습 가이드 Earned 3월 29, 2025 EDT
Classify Images with TensorFlow on Google Cloud Earned 3월 27, 2024 EDT
이미지 캡셔닝 모델 만들기 Earned 5월 23, 2023 EDT
이미지 생성 소개 Earned 5월 23, 2023 EDT
생성형 AI 입문자 - Vertex AI Earned 5월 23, 2023 EDT
어텐션 메커니즘 Earned 5월 23, 2023 EDT
대규모 언어 모델 소개 Earned 5월 23, 2023 EDT
인코더-디코더 아키텍처 Earned 5월 21, 2023 EDT
생성형 AI 소개 Earned 5월 18, 2023 EDT
Transformer 모델 및 BERT 모델 Earned 5월 18, 2023 EDT
Use Machine Learning APIs on Google Cloud Earned 4월 10, 2023 EDT
Launching into Machine Learning - 한국어 Earned 4월 6, 2023 EDT
Compute Engine에서 부하 분산 구현 Earned 3월 5, 2023 EST
Google Cloud Big Data and Machine Learning Fundamentals - 한국어 Earned 2월 3, 2023 EST

이 과정은 학습자가 프로페셔널 머신러닝 엔지니어(PMLE) 자격증 시험을 준비하는 학습 계획을 수립하는 데 도움을 줍니다. 학습자는 시험에서 다루는 분야의 범위를 살펴보고 자신의 시험 준비 상태를 평가한 다음 개별 학습 계획을 세웁니다.

자세히 알아보기

Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.

자세히 알아보기

이 과정에서는 딥 러닝을 사용해 이미지 캡션 모델을 만드는 방법을 알아봅니다. 인코더 및 디코더와 모델 학습 및 평가 방법 등 이미지 캡션 모델의 다양한 구성요소에 대해 알아봅니다. 이 과정을 마치면 자체 이미지 캡션 모델을 만들고 이를 사용해 이미지의 설명을 생성할 수 있게 됩니다.

자세히 알아보기

이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.

자세히 알아보기

생성형 AI 입문자 - Vertex AI 과정은 Google Cloud에서 생성형 AI를 사용하는 방법에 대한 실습으로 이루어져 있습니다. 실습을 통해 다음을 알아봅니다. text-bison, chat-bison, textembedding-gecko을 포함한 Vertex AI PaLM API 제품군에서 모델을 사용하는 방법을 알아봅니다. 프롬프트 설계, 권장사항에 대해 배우고 아이디어 구상, 텍스트 분류, 텍스트 추출, 텍스트 요약 등에 이를 사용하는 방법도 학습합니다. 또한 Vertex AI 커스텀 학습으로 파운데이션 모델을 학습시켜 모델을 조정하는 방법과 Vertex AI 엔드포인트에 배포하는 방법도 알아봅니다.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.

자세히 알아보기

이 과정에서는 먼저 데이터에 관해 논의하면서 데이터 품질을 개선하고 탐색적 데이터 분석을 수행하는 방법을 알아봅니다. Vertex AI AutoML과 코드를 한 줄도 작성하지 않고 ML 모델을 빌드하고, 학습시키고, 배포하는 방법을 설명합니다. 학습자는 Big Query ML의 이점을 이해할 수 있습니다. 그런 다음, 머신러닝(ML) 모델 최적화 방법과 일반화 및 샘플링으로 커스텀 학습용 ML 모델 품질을 평가하는 방법을 다룹니다.

자세히 알아보기

입문 Compute Engine에서 부하 분산 구현 기술 배지 과정을 완료하여 gcloud 명령어 작성 및 Cloud Shell 사용, Compute Engine에서 가상 머신 만들기 및 배포, 네트워크 및 HTTP 부하 분산기 구성에 관한 본인의 기술을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 개인의 숙련도를 인정하기 위해 Google Cloud에서 단독 발급하는 디지털 배지로서 대화형 실습 환경을 통해 지식을 적용하는 역량을 테스트합니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받게 됩니다.

자세히 알아보기

이 과정에서는 데이터-AI 수명 주기를 지원하는 Google Cloud 빅데이터 및 머신러닝 제품과 서비스를 소개합니다. Google Cloud에서 Vertex AI를 사용하여 빅데이터 파이프라인 및 머신러닝 모델을 빌드하는 프로세스, 문제점 및 이점을 살펴봅니다.

자세히 알아보기