Hafiz Muhammad Attaullah
成为会员时间:2020
白银联赛
7300 积分
成为会员时间:2020
完成在 Cloud Run 上开发无服务器应用技能徽章中级课程, 展示您在以下方面的技能:集成 Cloud Run 与 Cloud Storage 以管理数据, 使用 Cloud Run 和 Pub/Sub 设计弹性异步系统架构, 构建依托 Cloud Run 技术的 REST API 网关,以及在 Cloud Run 上构建和部署服务。
完成开发 Google Cloud 网络课程,赢取技能徽章。在此课程中,您将学习 部署和监控应用的多种方法,包括执行以下任务的方法:探索 IAM 角色并添加/移除 项目访问权限、创建 VPC 网络、部署和监控 Compute Engine 虚拟机、 编写 SQL 查询、在 Compute Engine 中部署和监控虚拟机,以及使用 Kubernetes 通过多种部署方法部署应用。
Earn the introductory skill badge by completing the Build a Website on Google Cloud skill badge course. This course is based on the Get Cooking in Cloud series and covers`:`Deploying a website on Cloud RunHosting a web app on Compute EngineCreating, deploying, and scaling your website on Google Kubernetes EngineMigrating from a monolithic application to a microservices architecture using Cloud Build
在众多课程中,本入门课程独具特色。 这些实验经过精心设计,旨在让 IT 专业人员通过实践掌握 Google Cloud 认证 Associate Cloud Engineer 考核中的各项主题和服务内容。从 IAM 到网络组建和管理, 再到 Kubernetes Engine 部署,本课程将通过特定实验 检验您的 Google Cloud 知识掌握情况。请注意,虽然这些实操 实验有助于提升您的技能和能力,我们仍建议您同时查阅 考试指南和其他可用的备考资源。
完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。
完成入门级在 Compute Engine 上实现负载均衡技能徽章课程,展示自己在以下方面的技能: 编写 gcloud 命令和使用 Cloud Shell,在 Compute Engine 中创建和部署虚拟机, 以及配置网络和 HTTP 负载均衡器。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 该课程会检验您在交互式实操环境中运用所学知识的 能力。完成此技能徽章课程和作为最终评估的实验室挑战赛, 即可获得技能徽章,并在您的圈子中秀一秀。
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
大数据、机器学习和人工智能是当今计算领域的热门话题, 但这些领域的专业性很强,因而很难找到 入门资料。幸运的是,Google Cloud 在这些领域提供了方便用户使用的服务, 通过本入门级课程,您可以 开始学习使用 BigQuery、Cloud Speech API 和 Video Intelligence 等工具。
This is the second of two Quests of hands-on labs derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this second Quest, covering chapter 9 through the end of the book, you extend the skills practiced in the first Quest, and run full-fledged machine learning jobs with state-of-the-art tools and real-world data sets, all using Google Cloud tools and services.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Want to turn your marketing data into insights and build dashboards? Bring all of your data into one place for large-scale analysis and model building. Get repeatable, scalable, and valuable insights into your data by learning how to query it and using BigQuery. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
众所周知,机器学习是发展最快的技术领域之一, Google Cloud Platform 在推动其发展方面发挥了重要作用。 GCP 提供了一系列 API,几乎可以满足任何机器学习作业的需求。在 本入门课程中,您将了解机器学习在语言处理方面的运用, 通过实操实验学习 如何从文本中提取实体,执行情感和语法分析,以及 使用 Speech-to-Text API 进行转写。
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.