gonzalez jose andres
メンバー加入日: 2023
メンバー加入日: 2023
このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。
「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。
このオンデマンド速習コースでは、Google Cloud が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの要素について学び、実際にデプロイしてみます。これにはセキュリティを維持しながらネットワークを相互接続する方法や、ロード バランシング、自動スケーリング、インフラストラクチャの自動化、マネージド サービスも含まれます。
このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。
Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。
このコースでは、Associate Cloud Engineer 認定試験の合格を目指す方が受験の準備を進めることができます。試験範囲に含まれる Google Cloud ドメインの概要と、ドメインに関する知識を高めるための学習計画の作成方法について学習します。
このコースを受講すると、スケーラブルでパフォーマンスの高い LookML(Looker モデリング言語)モデルを開発し、ビジネス ユーザーの疑問解決に役立つ標準化されたすぐに使えるデータを提供できるようになります。このコースの修了時には、組織の Looker インスタンスでデータをキュレートして管理するための LookML モデルの構築と維持が可能になります。
このコースでは、これまで主に SQL のデベロッパーやアナリストが行っていたようなデータの探索や分析を Looker で実施する方法について学びます。このコースを修了すると、Looker の最新の分析プラットフォームを活用して、組織の Looker インスタンスにおける関連性の高いコンテンツの検索と探索、データに関する問い合わせ、必要に応じた新しい指標の作成、データドリブンな意思決定を促進するためのビジュアリゼーションとダッシュボードの作成や共有を行えるようになります。
このコースでは、ML について定義し、ビジネスで ML をどのように活用できるのかを学習します。機械学習を使用したデモをいくつか確認し、機械学習の主な用語(インスタンス、特徴、ラベルなど)について学習します。インタラクティブなラボでは、事前トレーニング済みの ML API の呼び出しを実行するほか、BigQuery ML で SQL のみを使用して独自の ML モデルを構築します。
このコースシリーズの 3 番目のコースは、「Achieving Advanced Insights with BigQuery」です。ここでは、高度な関数と、複雑なクエリを管理可能なステップに分割する方法を学びながら、SQL に関する知識を深めます。 BigQuery の内部アーキテクチャ(列ベースのシャーディング ストレージ)についてや、ARRAY と STRUCT を使用した、ネストされたフィールドと繰り返しフィールドなどの高度な SQL トピックについて説明します。最後に、クエリのパフォーマンスを最適化する方法と、承認済みビューを使用してデータを保護する方法について説明します。 このコースを修了したら、「Applying Machine Learning to Your Data with Google」コースに登録してください。
これは「Data to Insights」コースシリーズの 2 つ目のコースです。ここでは、新しい外部データセットを BigQuery に取り込み、Looker Studio で可視化する方法について説明します。また、複数テーブルの JOIN と UNION など、中級者向けの SQL のコンセプトについても説明します。JOIN や UNION を使用すると、複数のデータソースのデータを分析できます。 注: すでに SQL に関する知識をお持ちの方も、BigQuery に固有の要素(クエリ キャッシュやテーブル ワイルドカードの処理など)について学ぶことができます。 このコースを修了したら、「Achieving Advanced Insights with BigQuery」コースに登録してください。
このコースでは、データ アナリストが共通して直面する課題と、その課題を Google Cloud のビッグデータ ツールを使用して解決する方法を取り上げます。その過程で SQL を学習しながら、BigQuery と Dataprep を使用してデータセットを分析し、変換する方法について理解を深めます。 これは「From Data to Insights with Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Creating New BigQuery Datasets and Visualizing Insights」コースを受講してください。
このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。