Teilnehmen Anmelden

Ihre Kompetenzen in der Google Cloud Console anwenden

Anuj Joshi

Mitglied seit 2020

Classify Images with TensorFlow on Google Cloud Earned Jul 6, 2025 EDT
Machine Learning in the Enterprise Earned Jul 6, 2025 EDT
Production Machine Learning Systems Earned Jul 5, 2025 EDT
Einführung in die verantwortungsbewusste Anwendung von KI Earned Jul 5, 2025 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Jul 5, 2025 EDT
Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten Earned Jun 29, 2025 EDT
Generative KI kennenlernen – Vertex AI Earned Jun 26, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned Jun 25, 2025 EDT
Einführung in generative KI Earned Jun 25, 2025 EDT
Einführung in KI und maschinelles Lernen in Google Cloud Earned Jun 24, 2025 EDT
BigQuery für Machine Learning Earned Mai 19, 2025 EDT
Daten für ML-APIs in Google Cloud vorbereiten Earned Dez 29, 2023 EST
ML-Modelle mit BigQuery ML erstellen Earned Dez 29, 2023 EST
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Dez 29, 2023 EST
Preparing for your Professional Data Engineer Journey Earned Dez 28, 2023 EST
Building Resilient Streaming Analytics Systems on Google Cloud Earned Dez 28, 2023 EST
Building Batch Data Pipelines on Google Cloud Earned Dez 28, 2023 EST
Data Warehouse mit BigQuery erstellen Earned Dez 28, 2023 EST
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned Dez 28, 2023 EST
Google Cloud Big Data and Machine Learning Fundamentals Earned Dez 28, 2023 EST
Informationen aus BigQuery-Daten ableiten Earned Okt 31, 2023 EDT
Vertex AI Earned Jul 5, 2023 EDT
Grundlegende Sicherheitsfunktionen in Google Cloud implementieren Earned Jan 7, 2023 EST
Infrastruktur mit Terraform in Google Cloud erstellen Earned Jan 6, 2023 EST
Kubernetes-Anwendungen in Google Cloud bereitstellen Earned Jan 6, 2023 EST
DEPRECATED Exploring APIs Earned Dez 31, 2022 EST
Google Cloud-Grundlagen: Kerninfrastruktur Earned Dez 31, 2022 EST
Google Cloud-Netzwerk entwickeln Earned Dez 30, 2022 EST
Load Balancing in der Compute Engine implementieren Earned Dez 29, 2022 EST
Using the Cloud SDK Command Line Earned Dez 29, 2022 EST
Geschütztes Google Cloud-Netzwerk erstellen Earned Dez 29, 2022 EST
Umgebung für die Anwendungsentwicklung in Google Cloud einrichten Earned Nov 20, 2022 EST
Google Cloud Essentials Earned Okt 1, 2022 EDT

Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.

Weitere Informationen

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Weitere Informationen

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.

Weitere Informationen

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Der Kurs „Generative KI kennenlernen – Vertex AI“ umfasst eine Reihe von Labs zur Verwendung von generativer KI in Google Cloud. In den Labs lernen Sie, wie Sie die Modelle der Vertex AI PaLM API-Familie verwenden, einschließlich text-bison, chat-bison, und textembedding-gecko. Außerdem lernen Sie, wie Sie Prompts gestalten, Best Practices anwenden und die Modelle für Ideenfindung, Textklassifizierung, Textextraktion, Textzusammenfassungen und mehr verwenden. Weiterhin erfahren Sie, wie Sie ein Foundation Model durch das Trainieren über benutzerdefiniertes Training in Vertex AI optimieren und es in einem Vertex AI-Endpunkt bereitstellen.

Weitere Informationen

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.

Weitere Informationen

In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.

Weitere Informationen

Sie möchten Machine-Learning-Modelle mithilfe von SQL in Minuten statt in Stunden erstellen? BigQuery ML sorgt für eine breite Nutzung von Machine Learning, indem es Datenanalysten ermöglicht, ML-Modelle zu erstellen, zu trainieren und zu bewerten sowie mit den Modellen und vorhandenen SQL-Tools und ‑Fähigkeiten Vorhersagen zu treffen. In dieser Lab-Reihe experimentieren Sie mit verschiedenen Modelltypen und erfahren, was für ein gutes Modell notwendig ist.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Weitere Informationen

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Weitere Informationen

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Weitere Informationen

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Data Warehouse mit BigQuery erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Daten zusammenführen, um neue Tabellen zu erstellen, Probleme mit Joins lösen, Daten mit Unions anhängen, nach Daten partitionierte Tabellen erstellen und JSON, Arrays sowie Strukturen in BigQuery nutzen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud vergeben wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Weitere Informationen

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Informationen aus BigQuery-Daten ableiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Schreiben von SQL-Abfragen, Abfragen öffentlicher Tabellen, Laden von Beispieldaten in BigQuery, Beheben häufig auftretender Syntaxfehler mithilfe der Abfragevalidierung in BigQuery und Erstellen von Berichten in Looker Studio durch Herstellen einer Verbindung zu BigQuery-Daten. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Welcome Gamers! Learn Google Cloud's Vertex AI, all while having fun! Vertex AI is Google Cloud's unified ML platform for solving your tough business problems. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Grundlegende Sicherheitsfunktionen in Google Cloud implementieren weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen und Zuweisen von Rollen mit Identity and Access Management (IAM); Erstellen und Verwalten von Dienstkonten; Herstellen einer privaten Verbindung zwischen Virtual Private Cloud-Netzwerken (VPC); Beschränken des Anwendungszugriffs mithilfe von Identity-Aware Proxy; Verwalten von Schlüsseln und verschlüsselten Daten mit Cloud Key Management Service (KMS); und Erstellen eines privaten Kubernetes-Clusters. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch Ihre Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netz…

Weitere Informationen

Mit dem Skill-Logo Infrastruktur mit Terraform in Google Cloud erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Grundsätze von Infrastruktur als Code (IaC) unter Verwendung von Terraform, Bereitstellen und Verwalten von Google Cloud-Ressourcen mit Terraform-Konfigurationen, effektives Statusmanagement (lokal und remote) und die Modularisierung von Terraform-Code für Wiederverwendbarkeit und Organisation. Mit Skill-Logos weisen Sie Ihr Wissen zu bestimmten Produkten im Rahmen praxisorientierter Labs und Challenge-Prüfungen nach. Absolvieren Sie einen Kurs, um ein Logo zu erhalten, oder nehmen Sie an einem Challenge-Lab teil, damit Sie Ihr Logo noch heute bekommen. Mit Logos können Sie Kenntnisse nachweisen, Ihr berufliches Profil schärfen und so Ihre Karrierechancen verbessern. Die bisher erhaltenen Logos können Sie in Ihrem Profil aufrufen.

Weitere Informationen

Mit dem Skill-Logo Kubernetes-Anwendungen in Google Cloud bereitstellen weisen Sie Kenntnisse in folgenden Bereichen nach: Konfigurieren und Erstellen von Docker-Container-Images, Erstellen und Verwalten von Google Kubernetes Engine-Clustern, Verwenden von kubectl für eine effiziente Clusterverwaltung und Bereitstellen von Kubernetes-Anwendungen mit leistungsfähigen Continuous Delivery-Abläufen.

Weitere Informationen

Google Cloud Application Programming Interfaces are the mechanism to interact with Google Cloud Services programmatically. This quest will give you hands-on practice with a variety of GCP APIs, which you will learn through working with Google’s APIs Explorer, a tool that allows you to browse APIs and run their methods interactively. By learning how to transfer data between Cloud Storage buckets, deploy Compute Engine instances, configure Dataproc clusters and much more, Exploring APIs will show you how powerful APIs are and why they are used almost exclusively by proficient GCP users. Enroll in this quest today.

Weitere Informationen

In „Google Cloud-Grundlagen: Kerninfrastruktur“ werden wichtige Konzepte und die Terminologie für die Arbeit mit Google Cloud vorgestellt. In Videos und praxisorientierten Labs werden viele Computing- und Speicherdienste von Google Cloud sowie wichtige Tools für die Ressourcen- und Richtlinienverwaltung präsentiert und miteinander verglichen.

Weitere Informationen

Erhalten Sie ein Skill-Logo, indem Sie den Kurs Google Cloud-Netzwerk entwickeln abschließen. Dabei wird anhand verschiedener Aufgaben behandelt, wie Sie Anwendungen bereitstellen und beobachten, darunter: IAM-Rollen prüfen, den Zugriff auf Projekte ermöglichen/entfernen, VPC-Netzwerke erstellen, Compute Engine-VMs bereitstellen und beobachten, SQL-Abfragen schreiben, VMs in der Compute Engine bereitstellen und beobachten sowie Anwendungen mithilfe von Kubernetes und mehreren Deploymentmodellen bereitstellen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Mit dem Skill-Logo Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: Schreiben von gcloud-Befehlen, Verwenden von Cloud Shell, Erstellen und Bereitstellen von virtuellen Maschinen in der Compute Engine und Konfigurieren von Netzwerk- und HTTP-Load-Balancern. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud vergeben wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.

Weitere Informationen

Sichern Sie sich ein Skill-Logo, indem Sie den Kurs Geschütztes Google Cloud-Netzwerk erstellen abschließen. Dabei lernen Sie verschiedene netzwerkbezogene Ressourcen kennen, mit denen Sie Ihre Anwendungen in Google Cloud erstellen, skalieren und schützen können. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Erhalten Sie ein Skill-Logo, indem Sie den Kurs „Umgebung für die Anwendungsentwicklung in Google Cloud einrichten“ abschließen. Dabei lernen Sie, wie Sie eine speicherorientierte Cloud-Infrastruktur mithilfe der grundlegenden Funktionen der folgenden Technologien erstellen und verbinden: Cloud Storage, Identity and Access Management, Cloud Functions und Pub/Sub. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu bekommen, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

Weitere Informationen