Brian Nieto
Participante desde 2022
Participante desde 2022
Neste curso para iniciantes, você vai aprender sobre o fluxo de trabalho de análise de dados no Google Cloud e sobre as ferramentas necessárias para explorar, analisar e visualizar dados. Também vamos falar sobre como compartilhar suas descobertas com partes interessadas. Com o auxílio de laboratórios práticos, aulas, testes, demonstrações e um estudo de caso, vamos aprender a transformar conjuntos de dados brutos em dados limpos para gerar visualizações e dashboards de alto impacto. Se você já trabalha com dados e quer ter sucesso no Google Cloud ou progredir na carreira, este curso vai ajudar você a começar. Qualquer pessoa que trabalha ou usa análise de dados de forma profissional pode se beneficiar com este curso.
Este curso tem uma abordagem realista para o fluxo de trabalho de ML usando um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. Essa equipe precisa conhecer as ferramentas necessárias para a governança e o gerenciamento de dados e decidir a melhor abordagem para o processamento deles. A equipe terá três opções para criar modelos de ML em dois casos de uso. Neste curso, explicamos quando usar o AutoML, o BigQuery ML ou o treinamento personalizado para alcançar os objetivos.
O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.
Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.
Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.
Este é o segundo curso da série "Data to Insights". Vamos aprender a fazer a ingestão de novos conjuntos de dados externos no BigQuery e visualizá-los no Looker Studio. Também vamos analisar conceitos intermediários de SQL, como as operações JOIN e UNION em várias tabelas, para analisar dados de diversas fontes. Observação: Mesmo que você tenha experiência em SQL, há aspectos específicos do BigQuery (como usar o cache de consultas e os caracteres curinga de tabela) que podem ser novidade para você. Depois de terminar este curso, faça sua inscrição no "Achieving Advanced Insights with BigQuery".
O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.
As pessoas estão muito animadas com a tecnologia de nuvem e a transformação digital, mas também ainda têm muitas dúvidas. Exemplo: O que é a tecnologia de nuvem? O que significa transformação digital? Como a tecnologia de nuvem pode ajudar sua organização? Por onde começar? Se você já se questionou sobre isso, veio ao lugar certo. Este curso fornece uma visão geral dos tipos de oportunidades e desafios que as empresas encaram em suas jornadas de transformação digital. Se quiser saber mais sobre tecnologia de nuvem para se destacar no trabalho e ajudar a construir o futuro da sua empresa, este curso introdutório sobre transformação digital é para você. Este curso faz parte do programa de aprendizado do Líder digital do Cloud.
Complete the intermediate Manage Data Models in Looker skill badge to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Complete the introductory Build LookML Objects in Looker skill badge to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Data Catalog é um serviço de gerenciamento de metadados totalmente gerenciado e escalonável. Com ele, as organizações descobrem, compreendem e gerenciam rapidamente todos os dados. Nesta Quest, vamos começar com algo simples - você aprenderá como pesquisar e adicionar tags a recursos de dados e metadados usando o Data Catalog. Depois que você aprender a desenvolver seus próprios modelos de tags correlacionados a dados da tabela do BigQuery, mostraremos como criar conectores do MySQL, PostgreSQL e SQLServer para o Data Catalog.
In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Conquiste o selo de habilidade introdutório Prepare os dados para relatórios e dashboards do Looker para mostrar que você sabe: filtrar, ordenar e dinamizar dados; mesclar resultados de diferentes Análises do Looker; e usar funções e operadores para criar dashboards e relatórios do Looker para análise e visualização de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprova sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
Neste curso, vamos definir o que é machine learning e como ele pode beneficiar seu negócio. Você vai conferir algumas demonstrações do ML em ação e aprender termos importantes da área, como instâncias, atributos e rótulos. Nos laboratórios interativos, você vai praticar a invocação de APIs de ML pré-treinadas e criar seus próprios modelos de machine learning usando apenas SQL no BigQuery ML.
O terceiro curso desta série é "Achieving Advanced Insights with BigQuery". Para continuar desenvolvendo seus conhecimentos sobre SQL, vamos aprender a usar funções avançadas e dividir uma consulta completa em etapas gerenciáveis. Você também vai conhecer a arquitetura interna do BigQuery (armazenamento fragmentado com base em colunas) e tópicos avançados do SQL, como campos aninhados e repetidos usando matrizes e structs. Por fim, vamos aprender a otimizar consultas para melhorar o desempenho e a proteger seus dados com visualizações autorizadas. Depois de concluir este curso, inscreva-se no "Applying Machine Learning to Your Data with Google Cloud".
Este é o segundo curso da série "Data to Insights". Vamos aprender a fazer a ingestão de novos conjuntos de dados externos no BigQuery e visualizá-los no Looker Studio. Também vamos analisar conceitos intermediários de SQL, como as operações JOIN e UNION em várias tabelas, para analisar dados de diversas fontes. Observação: Mesmo que você tenha experiência em SQL, há aspectos específicos do BigQuery (como usar o cache de consultas e os caracteres curinga de tabela) que podem ser novidade para você. Depois de terminar este curso, faça sua inscrição no "Achieving Advanced Insights with BigQuery".
Neste curso, conhecemos os desafios mais comuns enfrentados pelos analistas de dados e como resolvê-los com as ferramentas de big data no Google Cloud. Ao longo do caminho, você vai aprender um pouco de SQL e se familiarizar com o uso do BigQuery e do Dataprep para analisar e transformar seus conjuntos de dados. Este é o primeiro curso da série From Data to Insights with Google Cloud. Depois de concluir este curso, inscreva-se no curso Creating New BigQuery Datasets and Visualizing Insights.
Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Earn points by completing the labs accurately and receive bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.