Dołącz Zaloguj się

Wykorzystuj swoje umiejętności w konsoli Google Cloud

Fayzal Olushi

Jest członkiem od 2024

Liga brązowa

15515 pkt.
Gen AI: Unlock Foundational Concepts Earned wrz 2, 2025 EDT
Gen AI: Beyond the Chatbot Earned cze 23, 2025 EDT
Google Cloud: Prompt Engineering Guide Earned lis 16, 2024 EST
Recommendation Systems on Google Cloud Earned wrz 3, 2024 EDT
Przygotowywanie danych do użycia z interfejsami ML w Google Cloud Earned sie 27, 2024 EDT
Build and Deploy Machine Learning Solutions on Vertex AI Earned sie 27, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned lip 21, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned lip 6, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned cze 29, 2024 EDT

Gen AI: Unlock Foundational Concepts is the second course of the Gen AI Leader learning path. In this course, you unlock the foundational concepts of generative AI by exploring the differences between AI, ML, and gen AI, and understanding how various data types enable generative AI to address business challenges. You also gain insights into Google Cloud strategies to address the limitations of foundation models and the key challenges for responsible and secure AI development and deployment.

Więcej informacji

Gen AI: Beyond the Chatbot is the first course of the Gen AI Leader learning path and has no prerequisites. This course aims to move beyond the basic understanding of chatbots to explore the true potential of generative AI for your organization. You explore concepts like foundation models and prompt engineering, which are crucial for leveraging the power of gen AI. The course also guides you through important considerations you should make when developing a successful gen AI strategy for your organization.

Więcej informacji

Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.

Więcej informacji

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Więcej informacji

Ukończ szkolenie wprowadzające Przygotowywanie danych do użycia z interfejsami ML w Google Cloud, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: czyszczenie danych przy użyciu usługi Dataprep firmy Trifacta, uruchamianie potoków danych w Dataflow, tworzenie klastrów i uruchamianie zadań Apache Spark w Dataproc, a także wywoływanie interfejsów API dotyczących uczenia maszynowego, w tym Cloud Natural Language API, Google Cloud Speech-to-Text API oraz Video Intelligence API. Odznaka umiejętności to wyjątkowa cyfrowa odznaka wydawana przez Google Cloud, która potwierdza Twoją wiedzę o produktach i usługach Google Cloud. Aby ją zdobyć, musisz pokazać, że potrafisz zastosować zdobytą wiedzę w praktycznym, interaktywnym środowisku. Ukończ to szkolenie oraz moduł Challenge Lab, aby zdobyć odznakę umiejętności, którą możesz udostępnić w swojej sieci kontaktów.

Więcej informacji

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI course, where you will learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models. This skill badge course is for professional Data Scientists and Machine Learning Engineers. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

Więcej informacji

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Więcej informacji

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Więcej informacji

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Więcej informacji