Join Sign in

Apply your skills in Google Cloud console

Michael Verkruyse

Member since 2019

Bronze League

24325 points
[CEPF L300 Course]: Artificial Intelligence and Machine Learning Earned авг. 3, 2024 EDT
Conversation Design Fundamentals Earned мая 13, 2024 EDT
Stateful Flows Earned мая 11, 2024 EDT
Advanced Webhook Concepts Earned мая 11, 2024 EDT
Webhook fundamentals Earned мая 11, 2024 EDT
Building Complex End to End Self-Service Experiences in Dialogflow CX Earned мая 11, 2024 EDT
Conversational Agents Quality Assurance and Deployment Lifecycle Earned мая 11, 2024 EDT
Building Complex Self-Service Experiences in Conversational Agents Earned мая 10, 2024 EDT
Conversational AI Voice and Chat Integrations Earned мая 10, 2024 EDT
Customer Engagement Suite with Google AI Architecture Earned мая 10, 2024 EDT
Intro to CCAI and CCAI Engagement Framework Earned мая 8, 2024 EDT
CCAI Academy - Bot Building with Gen AI Earned апр. 12, 2024 EDT
Introduction to Vertex AI Studio Earned марта 27, 2024 EDT
Create Image Captioning Models Earned марта 27, 2024 EDT
Transformer Models and BERT Model Earned марта 27, 2024 EDT
Attention Mechanism Earned марта 26, 2024 EDT
Encoder-Decoder Architecture Earned марта 26, 2024 EDT
Introduction to Image Generation Earned марта 26, 2024 EDT
NCAA® March Madness®: Bracketology with Google Cloud Earned марта 18, 2019 EDT
[DEPRECATED] Data Engineering Earned марта 14, 2019 EDT

This Artificial Intelligence and Machine Learning course consists of a series of advanced-level labs designed to validate your proficiency in using AI and ML to extract, analyze, search, and store structured data from documents and improve customer service. Each lab presents a set of required tasks that you must complete with minimal assistance.You must score 80% or higher for each lab to complete this course, and fulfill your CEPF L300 Artificial Intelligence and Machine Learning requirement. For technical issues with a Challenge Lab, please raise a Buganizer ticket using this CEPF Buganizer template: go/cepfl300labsupport

Learn more

This course explores the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Learn more

Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.

Learn more

This course explores advanced technical considerations to optimize Webhook connectivity for comprehensive, end-to-end, Conversational Agent self-service experiences. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Learn more

In this course, you will learn the important role that different types of webhooks play in Conversational Agents development, and how to effectively integrate them into your routine configuration of a Conversational Agent. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Learn more

This course will equip you with the tools to develop complex conversational experiences in Dialogflow CX capable of identifying the user intent and routing it to the right self service flow.

Learn more

This course explores the quality assurance best practices and the tools available in Conversational Agents to ensure production grade quality during Conversational Agent development, as well as the key tenets for the creation of a robust end to end deployment lifecycle. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Learn more

This course will equip you with the tools to develop complex conversational experiences in Conversational Agents capable of identifying the user intent and routing it to the right self service flow. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Learn more

Learn about building conversational AI voice and chat integrations, including how telephony systems can connect with Google to enable phone-based interactions within the Conversational AI ecosystem. Explore key topics such as the differences between chat and voice conversations, the writing process for creating conversation scripts, and the beginning of the interrogative series and closing sequence.

Learn more

In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.

Learn more

This is a introductory course to all solutions in the Contact Centre AI (CCAI) portfolio and the Generative AI features that are poised to transform them. The course also explores the CCAI go to market and engagement model, the business case around CCAI, as well as the use cases and user personas addressed by the solution.

Learn more

The objective of this course is to upsklill experienced conversational AI practitioners on how to deliver Dialogflow Bots with new Gen AI capabilities Brought to you by the GCC Tech Specialization Team (gcc-enablement-tech@). Share your request/feedback on go/learningpacks-feedback!

Learn more

This course introduces Vertex AI Studio, a tool to interact with generative AI models, prototype business ideas, and launch them into production. Through an immersive use case, engaging lessons, and a hands-on lab, you’ll explore the prompt-to-product lifecycle and learn how to leverage Vertex AI Studio for Gemini multimodal applications, prompt design, prompt engineering, and model tuning. The aim is to enable you to unlock the potential of gen AI in your projects with Vertex AI Studio.

Learn more

This course teaches you how to create an image captioning model by using deep learning. You learn about the different components of an image captioning model, such as the encoder and decoder, and how to train and evaluate your model. By the end of this course, you will be able to create your own image captioning models and use them to generate captions for images

Learn more

This course introduces you to the Transformer architecture and the Bidirectional Encoder Representations from Transformers (BERT) model. You learn about the main components of the Transformer architecture, such as the self-attention mechanism, and how it is used to build the BERT model. You also learn about the different tasks that BERT can be used for, such as text classification, question answering, and natural language inference.This course is estimated to take approximately 45 minutes to complete.

Learn more

This course will introduce you to the attention mechanism, a powerful technique that allows neural networks to focus on specific parts of an input sequence. You will learn how attention works, and how it can be used to improve the performance of a variety of machine learning tasks, including machine translation, text summarization, and question answering. This course is estimated to take approximately 45 minutes to complete.

Learn more

This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.

Learn more

This course introduces diffusion models, a family of machine learning models that recently showed promise in the image generation space. Diffusion models draw inspiration from physics, specifically thermodynamics. Within the last few years, diffusion models became popular in both research and industry. Diffusion models underpin many state-of-the-art image generation models and tools on Google Cloud. This course introduces you to the theory behind diffusion models and how to train and deploy them on Vertex AI.

Learn more

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

Learn more

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Learn more