Приєднатися Увійти

Apply your skills in Google Cloud console

Mihir Ahlawat

Учасник із 2024

Срібна ліга

Кількість балів: 1360
Transformer Models and BERT Model Earned лип. 25, 2024 EDT
Encoder-Decoder Architecture Earned лип. 25, 2024 EDT

This course introduces you to the Transformer architecture and the Bidirectional Encoder Representations from Transformers (BERT) model. You learn about the main components of the Transformer architecture, such as the self-attention mechanism, and how it is used to build the BERT model. You also learn about the different tasks that BERT can be used for, such as text classification, question answering, and natural language inference.This course is estimated to take approximately 45 minutes to complete.

Докладніше

This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.

Докладніше