Dataflow シリーズの最後のコースでは、Dataflow 運用モデルのコンポーネントを紹介します。パイプラインのパフォーマンスのトラブルシューティングと最適化に役立つツールと手法を検証した後で、Dataflow パイプラインのテスト、デプロイ、信頼性に関するベスト プラクティスについて確認します。最後に、数百人のユーザーがいる組織に対して Dataflow パイプラインを簡単に拡張するためのテンプレートについても確認します。これらの内容を習得することで、データ プラットフォームの安定性を保ち、予期せぬ状況に対する回復力を確保できるようになります。
すべてのデータ パイプラインには、データレイクとデータ ウェアハウスという 2 つの主要コンポーネントがあります。このコースでは、各ストレージ タイプのユースケースを紹介し、Google Cloud で利用可能なデータレイクとデータ ウェアハウスのソリューションを技術的に詳しく説明します。また、データ エンジニアの役割や、効果的なデータ パイプラインが事業運営にもたらすメリットについて確認し、クラウド環境でデータ エンジニアリングを行うべき理由を説明します。 これは「Data Engineering on Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Google Cloud でのバッチデータ パイプラインの構築」コースに登録してください。
このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。