Hamity Guillermo
メンバー加入日: 2024
メンバー加入日: 2024
このコースでは、PMLE(Professional Machine Learning Engineer)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握したうえで、また、試験への準備状況を把握して、個々の学習計画を作成します。
このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。
このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。機械学習エンジニアリングの担当者は、ツールを活用して、デプロイしたモデルの継続的な改善と評価を行います。また、データ サイエンティストと協力して、あるいは自らがデータ サイエンティストとして、最も効果的なモデルを迅速かつ正確にデプロイできるようモデルを開発します。
ML をデータ パイプラインに組み込むと、データから分析情報を抽出する能力を向上できます。このコースでは、Google Cloud でデータ パイプラインに ML を含める複数の方法について説明します。カスタマイズがほとんど、またはまったく必要ない場合のために、このコースでは AutoML について説明します。よりカスタマイズされた ML 機能については、Notebooks と BigQuery の機械学習(BigQuery ML)を紹介します。また、Vertex AI を使用して ML ソリューションを本番環境に導入する方法も説明します。
ストリーミングによって企業が事業運営に関するリアルタイムの指標を取得できるようになり、ストリーミング データの処理を行う機会が増えてきました。このコースでは、Google Cloud でストリーミング データ パイプラインを構築する方法について学習します。受信ストリーミング データの処理のために Pub/Sub について説明します。また、このコースでは、Dataflow を使用してストリーミング データの集計や変換を行う方法、処理済みのレコードを分析用に BigQuery や Bigtable に保存する方法についても説明します。さらに、Qwiklabs を使用して Google Cloud でストリーミング データ パイプラインのコンポーネントを構築する実践演習を行います。
「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 スキルバッジを獲得してネットワークで共有しましょう。
通常、データ パイプラインは、「抽出、読み込み(EL)」、「抽出、読み込み、変換(ELT)」、「抽出、変換、読み込み(ETL)」のいずれかの考え方に分類できます。このコースでは、バッチデータではどの枠組みを、どのような場合に使用するのかについて説明します。本コースではさらに、BigQuery、Dataproc 上での Spark の実行、Cloud Data Fusion のパイプラインのグラフ、Dataflow でのサーバーレスのデータ処理など、データ変換用の複数の Google Cloud テクノロジーについて説明します。また、Qwiklabs を使用して Google Cloud でデータ パイプラインのコンポーネントを構築する実践演習を行います。
すべてのデータ パイプラインには、データレイクとデータ ウェアハウスという 2 つの主要コンポーネントがあります。このコースでは、各ストレージ タイプのユースケースを紹介し、Google Cloud で利用可能なデータレイクとデータ ウェアハウスのソリューションを技術的に詳しく説明します。また、データ エンジニアの役割や、効果的なデータ パイプラインが事業運営にもたらすメリットについて確認し、クラウド環境でデータ エンジニアリングを行うべき理由を説明します。 これは「Data Engineering on Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Google Cloud でのバッチデータ パイプラインの構築」コースに登録してください。
このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。