walid oualili
Membro dal giorno 2020
Campionato Argento
10810 punti
Membro dal giorno 2020
Complete the intermediate Develop Serverless Applications on Cloud Run skill badge course to demonstrate skills in the following: integrating Cloud Run with Cloud Storage for data management, architecting resilient asynchronous systems using Cloud Run and Pub/Sub, constructing REST API gateways powered by Cloud Run, and building and deploying services on Cloud Run.
Complete the intermediate Develop Serverless Apps with Firebase skill badge course to demonstrate skills in the following: architecting and building serverless web applications with Firebase, utilizing Firestore for database management, automating deployment processes using Cloud Build, and integrating Google Assistant functionality into your applications.
Kubernetes è il sistema di orchestrazione dei container più diffuso e Google Kubernetes Engine è stato progettato specificamente per supportare i deployment Kubernetes gestiti in Google Cloud. In questo corso di livello avanzato, potrai esercitarti nella configurazione di immagini e container Docker e nel deployment di applicazioni Kubernetes Engine complete. Grazie a questo corso, apprenderai le competenze pratiche necessarie per integrare l'orchestrazione dei container nel tuo workflow. Stai cercando un Challenge Lab pratico per dimostrare le tue abilità e convalidare le tue conoscenze? Dopo aver completato questo corso, termina il Challenge Lab aggiuntivo alla fine del corso Esegui il deployment di applicazioni Kubernetes su Google Cloud per ricevere un esclusivo badge digitale Google Cloud.
Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.
Guadagna un badge delle competenze completando il corso Creazione di una rete Google Cloud sicura, in cui scoprirai più risorse di networking per creare, scalare e proteggere le tue applicazioni su Google Cloud.
Ottieni un badge delle competenze completando il corso Configura un ambiente di sviluppo di app su Google Cloud, in cui imparerai a creare e connettere un'infrastruttura cloud incentrata sull'archiviazione utilizzando le funzionalità di base delle seguenti tecnologie: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.
Earn a skill badge by completing the Cloud Architecture: Design, Implement, and Manage to demonstrate skills in the following: deploy a publicly accessible website using Apache web servers, configure a Compute Engine VM using startup scripts, configure secure RDP using a Windows Bastion host and firewall rules, build and deploy a Docker image to a Kubernetes cluster and then update it, and create a CloudSQL instance and import a MySQL database. This skill badge is a great resource for understanding topics that will appear in the Google Cloud Certified Professional Cloud Architect certification exam.
Earn a skill badge by completing the Set Up a Google Cloud Network skill badge course, where you will learn how to perform basic networking tasks on Google Cloud Platform - create a custom network, add subnets firewall rules, then create VMs and test the latency when they communicate with each other.
Guadagna un badge delle competenze completando il corso Sviluppa la tua rete Google Cloud, in cui apprenderai diversi modi per eseguire il deployment e il monitoraggio delle applicazioni, tra cui: esplorare i ruoli IAM e aggiungere/rimuovere l'accesso ai progetti, creare reti VPC, eseguire il deployment e il monitoraggio delle VM di Compute Engine, scrivere query SQL, eseguire il deployment e il monitoraggio delle VM in Compute Engine ed eseguire il deployment delle applicazioni utilizzando Kubernetes con più approcci al deployment.
Questo corso introduttivo è unico tra le altre offerte di corsi. I lab sono stati selezionati per offrire ai professionisti IT la possibilità di fare pratica su argomenti e servizi che compaiono nell'esame di certificazione Google Cloud - Associate Cloud Engineer. Da IAM al networking, al deployment di Kubernetes Engine, questo corso si compone di lab specifici che metteranno alla prova le tue conoscenze su Google Cloud. Tieni presente che, sebbene la pratica con questi lab ti aiuterà a migliorare le tue competenze e capacità, ti consigliamo di rivedere anche la guida all'esame e altre risorse di preparazione disponibili.
Ottieni il corso intermedio con badge delle competenze Prepara i dati per le API ML su Google Cloud per dimostrare le tue competenze nei seguenti ambiti: pulizia dei dati con Dataprep di Trifacta, esecuzione delle pipeline di dati in Dataflow, creazione dei cluster ed esecuzione dei job Apache Spark in Dataproc e richiamo delle API ML tra cui l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text e l'API Video Intelligence.
Ottieni il badge delle competenze introduttivo Implementa il bilanciamento del carico su Compute Engine per dimostrare le tue competenze nei seguenti ambiti: scrivere comandi gcloud e utilizzare Cloud Shell, creare ed eseguire il deployment di macchine virtuali in Compute Engine e configurare bilanciatori del carico di rete e HTTP. Un badge delle competenze è un badge digitale esclusivo, assegnato da Google Cloud come riconoscimento della tua competenza nell'uso dei prodotti e servizi Google Cloud dopo aver messo alla prova la tua cacpacità di applicare le tue conoscenze in un ambiente interattivo pratico. Completa questo corso e il Challenge Lab conclusivo per ricevere un badge delle competenze da condividere con la tua rete.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this course you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out!
Security is an uncompromising feature of Google Cloud services, and Google Cloud has developed specific tools for ensuring safety and identity across your projects. In this fundamental-level quest, you will get hands-on practice with Google Cloud’s Identity and Access Management (IAM) service, which is the go-to for managing user and virtual machine accounts. You will get experience with network security by provisioning VPCs and VPNs, and learn what tools are available for security threat and data loss protections.
In this quest, you’ll learn to work with services related to Deployment and Management, including AWS Identity and Access Management (IAM), AWS Elastic Beanstalk, AWS CloudFormation, and AWS OpsWorks.
Se sei uno sviluppatore cloud principiante che vuole fare ancora pratica Google Cloud Essentials, questo corso fa al caso tuo. Acquisirai esperienza pratica attraverso lab specifici su Cloud Storage e altri servizi per applicazioni chiave come Monitoring e Cloud Functions. Svilupperai competenze preziose applicabili a qualsiasi iniziativa Google Cloud.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
Completa il corso introduttivo con badge delle competenze Genera insight dai dati BigQuery per dimostrare le tue competenze nei seguenti ambiti: scrivere query SQL, eseguire query su tabelle pubbliche, caricare dati di esempio in BigQuery, risolvere i problemi di sintassi comuni con lo strumento di convalida query in BigQuery e creare report in Looker Studio collegando ai dati di BigQuery.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Want to build ML models in minutes instead of hours using just SQL? BigQuery ML democratizes machine learning by letting data analysts create, train, evaluate, and predict with machine learning models using existing SQL tools and skills. In this series of labs, you will experiment with different model types and learn what makes a good model.
Big data, machine learning e intelligenza artificiale sono i principali argomenti di computing trattati attualmente, ma questi campi sono piuttosto specializzati ed è complicato reperire materiale introduttivo. Fortunatamente, Google Cloud offre servizi facili da usare in queste aree e con questo corso di livello introduttivo, in modo da poter fare i primi passi con strumenti come BigQuery, API Cloud Speech e Video Intelligence.