加入 登录

在 Google Cloud 控制台中运用您的技能

Ratna Kumar Annavarapu

成为会员时间:2023

青铜联赛

1230 积分
Vertex AI Studio 簡介 Earned Aug 15, 2023 EDT
建立圖像說明生成模型 Earned Aug 14, 2023 EDT
Transformer 和 BERT 模型 Earned Aug 14, 2023 EDT
注意力機制 Earned Aug 14, 2023 EDT
編碼器-解碼器架構 Earned Aug 14, 2023 EDT
圖像生成簡介 Earned Aug 14, 2023 EDT
Generative AI Fundamentals - 繁體中文 Earned Aug 14, 2023 EDT
負責任的 AI 技術簡介 Earned Aug 14, 2023 EDT
建構安全的 Google Cloud 網路 Earned Aug 11, 2023 EDT
Logging and Monitoring in Google Cloud Earned Aug 8, 2023 EDT
Mitigating Security Vulnerabilities on Google Cloud Earned Aug 8, 2023 EDT
Security Best Practices in Google Cloud Earned Aug 6, 2023 EDT
Managing Security in Google Cloud Earned Jul 19, 2023 EDT
Networking in Google Cloud: Routing and Addressing Earned Jul 13, 2023 EDT
Networking in Google Cloud: Fundamentals Earned Jul 3, 2023 EDT
Google Cloud 基礎知識:核心基礎架構 Earned Jun 26, 2023 EDT
How Google Does Machine Learning Earned Jun 22, 2023 EDT
大型語言模型簡介 Earned Jun 12, 2023 EDT
生成式 AI 簡介 Earned Jun 12, 2023 EDT

本課程會介紹 Vertex AI Studio。您可以運用這項工具和生成式 AI 模型互動、根據商業構想設計原型,並投入到正式環境。透過身歷其境的應用實例、有趣的課程及實作實驗室,您將能探索從提示到正式環境的生命週期,同時學習如何將 Vertex AI Studio 運用在多模態版 Gemini 應用程式、提示設計、提示工程和模型調整。這個課程的目標是讓您能運用 Vertex AI Studio,在專案中發揮生成式 AI 的潛能。

了解详情

本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。

了解详情

這堂課程將說明變換器架構,以及基於變換器的雙向編碼器表示技術 (BERT) 模型,同時帶您瞭解變換器架構的主要組成 (如自我注意力機制) 和如何用架構建立 BERT 模型。此外,也會介紹 BERT 適用的各種任務,像是文字分類、問題回答和自然語言推論。課程預計約 45 分鐘。

了解详情

本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。

了解详情

本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。

了解详情

本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。

了解详情

完成「Introduction to Generative AI」、「Introduction to Large Language Models」和「Introduction to Responsible AI」課程,即可獲得技能徽章。通過最終測驗,就能展現您對生成式 AI 基本概念的掌握程度。 「技能徽章」是 Google Cloud 核發的數位徽章,用於表彰您對 Google Cloud 產品和服務的相關知識。您可以將技能徽章公布在社群媒體的個人資料中,向其他人分享您的成果。

了解详情

這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。

了解详情

完成「建構安全的 Google Cloud 網路」課程,即可獲得技能徽章。本課程將說明多項網路相關 資源,協助您在 Google Cloud 建構、調度資源和保護應用程式。

了解详情

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

了解详情

In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.

了解详情

This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Storage access control technologies, Security Keys, Customer-Supplied Encryption Keys, API access controls, scoping, shielded VMs, encryption, and signed URLs. It also covers securing Kubernetes environments.

了解详情

This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Identity, Resource Manager, IAM, Virtual Private Cloud firewalls, Cloud Load Balancing, Cloud Peering, Cloud Interconnect, and VPC Service Controls. This is the first course of the Security in Google Cloud series. After completing this course, enroll in the Security Best Practices in Google Cloud course.

了解详情

Welcome to the second course in the networking and Google Cloud series routing and addressing. In this course, we'll cover the central routing and addressing concepts that are relevant to Google Cloud's networking capabilities. Module one will lay the foundation by exploring network routing and addressing in Google Cloud, covering key building blocks such as routing IPv4, bringing your own IP addresses and setting up cloud DNS. In Module two will shift our focus to private connection options, exploring use cases and methods for accessing Google and other services privately using internal IP addresses. By the end of this course, you'll have a solid grasp of how to effectively route and address your network traffic within Google Cloud.

了解详情

Networking in Google cloud is a 6 part course series. Welcome to the first course of our six part course series, Networking in Google Cloud: Fundamentals.  This course provides a comprehensive overview of core networking concepts, including networking fundamentals, virtual private clouds (VPCs), and the sharing of VPC networks. Additionally, the course covers network logging and monitoring techniques. 

了解详情

「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。

了解详情

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

了解详情

這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。

了解详情

這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。

了解详情