加入 登录

在 Google Cloud 控制台中运用您的技能

Álvaro Fernandez Villar

成为会员时间:2024

Scaling with Google Cloud Operations Earned Aug 21, 2025 EDT
Trust and Security with Google Cloud Earned Aug 21, 2025 EDT
Modernize Infrastructure and Applications with Google Cloud Earned Aug 20, 2025 EDT
Innovating with Google Cloud Artificial Intelligence Earned Aug 18, 2025 EDT
Exploring Data Transformation with Google Cloud Earned Aug 18, 2025 EDT
Digital Transformation with Google Cloud Earned Aug 17, 2025 EDT
Preparing for your Professional Cloud Architect Journey Earned Jun 6, 2025 EDT
使用 Gemini 多模態功能和多模態 RAG 檢查複合型文件 Earned May 7, 2024 EDT
開發人員的負責任 AI 技術:可解釋性與透明度 Earned May 6, 2024 EDT
生成式 AI 適用的機器學習運作 (MLOps) Earned May 5, 2024 EDT
開發人員的負責任 AI 技術:公平性與偏誤 Earned May 3, 2024 EDT
Vertex AI Studio 簡介 Earned May 3, 2024 EDT
Vector Search 和嵌入 Earned May 3, 2024 EDT
建立圖像說明生成模型 Earned May 2, 2024 EDT
Transformer 和 BERT 模型 Earned May 2, 2024 EDT
編碼器-解碼器架構 Earned May 2, 2024 EDT
注意力機制 Earned May 2, 2024 EDT
圖像生成簡介 Earned May 2, 2024 EDT
Natural Language Processing on Google Cloud Earned Apr 30, 2024 EDT
Recommendation Systems on Google Cloud Earned Apr 29, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned Apr 18, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Apr 15, 2024 EDT
Production Machine Learning Systems Earned Apr 15, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned Apr 9, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Apr 3, 2024 EDT
Machine Learning in the Enterprise Earned Apr 2, 2024 EDT
Feature Engineering Earned Apr 1, 2024 EDT
Launching into Machine Learning Earned Feb 12, 2024 EST
How Google Does Machine Learning Earned Feb 5, 2024 EST
Google Cloud 的 AI 和機器學習服務簡介 Earned Jan 30, 2024 EST
Google Cloud Big Data and Machine Learning Fundamentals - Locales Earned Jan 29, 2024 EST

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

了解详情

This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

完成 使用 Gemini 多模態功能和多模態 RAG 檢查複合型文件 技能徽章中階課程,即可證明您具備下列技能: 透過 Gemini 多模態功能,使用多模態提示從文字和影像資料擷取資訊、生成影片說明,以及擷取影片以外的額外資訊; 透過 Gemini 的多模態檢索增強生成 (RAG) 功能,為含有文字和圖片的文件建構中繼資料、取得所有相關文字分塊,以及顯示引用資料。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本課程及結業評量挑戰研究室,即可取得技能徽章,並與親友分享。

了解详情

本課程旨在說明 AI 的可解釋性和透明度概念、探討 AI 透明度對開發人員和工程師的重要性。課程中也會介紹實務方法和工具,有助於讓資料和 AI 模型透明且可解釋。

了解详情

本課程旨在提供必要的知識和工具,協助您探索機器學習運作團隊在部署及管理生成式 AI 模型時面臨的獨特挑戰,並瞭解 Vertex AI 如何幫 AI 團隊簡化機器學習運作程序,打造成效非凡的生成式 AI 專案。

了解详情

本課程旨在說明負責任 AI 技術的概念和 AI 開發原則,同時介紹各項技術,在實務上找出公平性和偏誤,減少 AI/機器學習做法上的偏誤。我們也將探討實用方法和工具,透過 Google Cloud 產品和開放原始碼工具,導入負責任 AI 技術的最佳做法。

了解详情

本課程會介紹 Vertex AI Studio。您可以運用這項工具和生成式 AI 模型互動、根據商業構想設計原型,並投入到正式環境。透過身歷其境的應用實例、有趣的課程及實作實驗室,您將能探索從提示到正式環境的生命週期,同時學習如何將 Vertex AI Studio 運用在多模態版 Gemini 應用程式、提示設計、提示工程和模型調整。這個課程的目標是讓您能運用 Vertex AI Studio,在專案中發揮生成式 AI 的潛能。

了解详情

這堂課程會介紹 AI 搜尋技術、工具和應用程式。主題涵蓋使用向量嵌入執行語意搜尋;結合語意和關鍵字做法的混合型搜尋機制;以及運用檢索增強生成 (RAG) 技術建構有基準的 AI 代理,盡可能減少 AI 幻覺。您可以實際使用 Vertex AI Vector Search,打造智慧型搜尋引擎。

了解详情

本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。

了解详情

這堂課程將說明變換器架構,以及基於變換器的雙向編碼器表示技術 (BERT) 模型,同時帶您瞭解變換器架構的主要組成 (如自我注意力機制) 和如何用架構建立 BERT 模型。此外,也會介紹 BERT 適用的各種任務,像是文字分類、問題回答和自然語言推論。課程預計約 45 分鐘。

了解详情

本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。

了解详情

本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。

了解详情

本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。

了解详情

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

了解详情

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

了解详情

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

了解详情

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

了解详情

本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。

了解详情

This course, Google Cloud Big Data and Machine Learning Fundamentals - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Google Cloud Big Data and Machine Learning Fundamentals. This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

了解详情