Inscreva-se Fazer login

Aplique suas habilidades no console do Google Cloud

Álvaro Fernandez Villar

Participante desde 2024

Escalonamento com as Operações do Google Cloud Earned Aug 21, 2025 EDT
Confiança e segurança com o Google Cloud Earned Aug 21, 2025 EDT
Modernização de infraestrutura e aplicativos com o Google Cloud Earned Aug 20, 2025 EDT
Como inovar com a inteligência artificial do Google Cloud Earned Aug 18, 2025 EDT
Como é feita a transformação de dados com o Google Cloud Earned Aug 18, 2025 EDT
Transformação digital com o Google Cloud Earned Aug 17, 2025 EDT
Preparing for Your Professional Cloud Architect Journey - Português Brasileiro Earned Jun 6, 2025 EDT
Inspecione documentos avançados usando a multimodalidade do Gemini e o RAG multimodal Earned May 7, 2024 EDT
IA responsável para desenvolvedores: interpretabilidade e transparência Earned May 6, 2024 EDT
Operações de Machine Learning (MLOps) para IA Generativa Earned May 5, 2024 EDT
IA responsável para desenvolvedores: imparcialidade e viés Earned May 3, 2024 EDT
Introdução ao Vertex AI Studio Earned May 3, 2024 EDT
Pesquisa vetorial e embeddings Earned May 3, 2024 EDT
Como criar modelos de legenda para imagens Earned May 2, 2024 EDT
Modelos de transformador e modelo de BERT Earned May 2, 2024 EDT
Arquitetura de codificador-decodificador Earned May 2, 2024 EDT
Mecanismo de atenção Earned May 2, 2024 EDT
Introdução à geração de imagens Earned May 2, 2024 EDT
Natural Language Processing on Google Cloud Earned Apr 30, 2024 EDT
Recommendation Systems on Google Cloud Earned Apr 29, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned Apr 18, 2024 EDT
Operações de machine learning (MLOps) com a Vertex AI: como gerenciar atributos Earned Apr 15, 2024 EDT
Criação de sistemas de machine learning de produção Earned Apr 15, 2024 EDT
Operações de machine learning (MLOps): introdução Earned Apr 9, 2024 EDT
Como criar, treinar e implantar modelos de ML com o Keras no Google Cloud Earned Apr 3, 2024 EDT
Machine learning nas empresas Earned Apr 2, 2024 EDT
Engenharia de atributos Earned Apr 1, 2024 EDT
Launching into Machine Learning - Português Brasileiro Earned Feb 12, 2024 EST
How Google Does Machine Learning - Português Brasileiro Earned Feb 5, 2024 EST
Introdução à IA e ao machine learning no Google Cloud Earned Jan 30, 2024 EST
Google Cloud Big Data and Machine Learning Fundamentals - Português Brasileiro Earned Jan 29, 2024 EST

Organizações de vários portes estão adotando a tecnologia e a flexibilidade da nuvem para transformar a forma como operam. No entanto, gerenciar e escalonar recursos na nuvem de maneira eficaz é uma tarefa complexa. O curso Escalonamento com as Operações do Google Cloud traz noções básicas de confiabilidade, resiliência e operações modernas na nuvem, explicando como o Google Cloud pode ajudar nesses esforços. Como parte do programa de aprendizado do Líder digital do Cloud, o objetivo deste curso é ajudar você a crescer profissionalmente e desenvolver o futuro do seu próprio negócio.

Saiba mais

Conforme as organizações movem os próprios dados e aplicativos para a nuvem, novos problemas de segurança podem aparecer. No curso Confiança e segurança com o Google Cloud, explicamos os conceitos básicos de segurança na nuvem, o valor da abordagem multicamadas do Google Cloud para a proteção da infraestrutura e como o Google conquista e mantém a confiança dos clientes na nuvem. Como parte do programa de aprendizado do Líder digital do Cloud, o objetivo deste curso é ajudar você a crescer profissionalmente e desenvolver o futuro do seu próprio negócio.

Saiba mais

Muitas empresas tradicionais usam sistemas e aplicativos legados que não conseguem atender às expectativas dos clientes modernos. Com frequência, os líderes empresariais precisam escolher entre manter sistemas de TI antigos ou investir em novos produtos e serviços. O curso "Modernização de infraestrutura e aplicativos com o Google Cloud" aborda esses desafios e oferece soluções relacionadas à tecnologia de nuvem para cada um. Como parte do programa de aprendizado do Líder digital do Cloud, o objetivo deste curso é ajudar você a crescer profissionalmente e desenvolver o futuro do seu próprio negócio.

Saiba mais

A inteligência artificial (IA) e o machine learning (ML) representam importantes evoluções na tecnologia da informação que estão transformando uma ampla variedade de setores. O curso "Como inovar com a inteligência artificial do Google Cloud" mostra como as organizações podem usar a IA e o ML para transformar processos comerciais. Como parte do programa de aprendizado do Líder digital do Cloud, o objetivo deste curso é ajudar você a crescer profissionalmente e desenvolver o futuro do seu próprio negócio.

Saiba mais

As tecnologias de nuvem podem agregar muito valor a uma organização e, ao combinar esse poder com dados, o potencial de crescer e criar novas experiências para os clientes é ainda maior. O curso "Como é feita a transformação de dados com o Google Cloud" mostra como os dados agregam valor às organizações e como o Google Cloud torna esses dados eficientes e acessíveis. Este curso, que faz parte do programa de aprendizado do Líder digital do Cloud, se destina às pessoas que querem crescer na profissão e construir o futuro da empresa.

Saiba mais

As pessoas estão muito animadas com a tecnologia de nuvem e a transformação digital, mas também ainda têm muitas dúvidas. Exemplo: O que é a tecnologia de nuvem? O que significa transformação digital? Como a tecnologia de nuvem pode ajudar sua organização? Por onde começar? Se você já se questionou sobre isso, veio ao lugar certo. Este curso fornece uma visão geral dos tipos de oportunidades e desafios que as empresas encaram em suas jornadas de transformação digital. Se quiser saber mais sobre tecnologia de nuvem para se destacar no trabalho e ajudar a construir o futuro da sua empresa, este curso introdutório sobre transformação digital é para você. Este curso faz parte do programa de aprendizado do Líder digital do Cloud.

Saiba mais

Este curso ajuda a criar um plano de estudos para o exame de certificação Professional Cloud Architect (PCA). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.

Saiba mais

Conclua o curso intermediário para obter o selo de habilidade Inspecione documentos avançados usando a multimodalidade do Gemini e o RAG multimodal e demonstrar suas habilidades em: usar comandos multimodais para extrair informações de dados textuais e visuais, gerar uma descrição de vídeo e recuperar mais informações além das que aparecem no vídeo usando a multimodalidade do Gemini; criar metadados de documentos com textos e imagens, acessar todos os blocos de texto relevantes e imprimir citações usando a Geração Aumentada de Recuperação (RAG, na sigla em inglês) multimodal com o Gemini. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado no seu currículo e…

Saiba mais

Neste curso, apresentamos os conceitos de interpretabilidade e transparência em IA. Vamos abordar a importância da transparência em IA para desenvolvedores e engenheiros. O curso também abrange ferramentas e métodos práticos para ajudar a alcançar a interpretabilidade e a transparência em dados e modelos de IA.

Saiba mais

O objetivo desse curso é equipar você com o conhecimento e as ferramentas necessários para resolver os desafios enfrentados por equipes de MLOps durante o desenvolvimento e gerenciamento de modelos de IA generativa. Também queremos mostrar como a Vertex AI ajuda equipes de IA a simplificar processos de MLOps e a alcançar o sucesso em projetos de IA generativa.

Saiba mais

Neste curso, apresentamos conceitos de IA responsável e princípios de IA. Ele contém técnicas para identificar e reduzir o viés e aplicar a imparcialidade nas práticas de ML/IA. Vamos abordar ferramentas e métodos práticos para implementar as práticas recomendadas de IA responsável usando produtos do Google Cloud e ferramentas de código aberto.

Saiba mais

Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.

Saiba mais

Conheça aplicativos, ferramentas e tecnologias de pesquisa com tecnologia de IA neste curso. Aprenda a fazer pesquisa semântica usando embeddings de vetores, pesquisa híbrida combinando abordagens semânticas e por palavras-chave, e geração aumentada por recuperação (RAG), minimizando as alucinações artificiais da IA como um agente de IA embasado. Ganhe experiência prática com a pesquisa vetorial da Vertex AI para criar um mecanismo de pesquisa inteligente.

Saiba mais

Neste curso, ensinamos a criar um modelo de legenda para imagens usando aprendizado profundo. Você vai aprender sobre os diferentes componentes de um modelo de legenda para imagens, como o codificador e decodificador, e de que forma treinar e avaliar seu modelo. Ao final deste curso, você será capaz de criar e usar seus próprios modelos de legenda para imagens.

Saiba mais

Este curso é uma introdução à arquitetura de transformador e ao modelo de Bidirectional Encoder Representations from Transformers (BERT, na sigla em inglês). Você vai aprender sobre os principais componentes da arquitetura de transformador, como o mecanismo de autoatenção, e como eles são usados para construir o modelo de BERT. Também vai conhecer as diferentes tarefas onde é possível usar o BERT, como classificação de texto, respostas a perguntas e inferência de linguagem natural. O curso leva aproximadamente 45 minutos.

Saiba mais

Este curso apresenta um resumo da arquitetura de codificador-decodificador, que é uma arquitetura de machine learning avançada e frequentemente usada para tarefas sequência para sequência (como tradução automática, resumo de textos e respostas a perguntas). Você vai conhecer os principais componentes da arquitetura de codificador-decodificador e aprender a treinar e disponibilizar esses modelos. No tutorial do laboratório relacionado, você vai codificar uma implementação simples da arquitetura de codificador-decodificador para geração de poesia desde a etapa inicial no TensorFlow.

Saiba mais

Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).

Saiba mais

Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.

Saiba mais

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Saiba mais

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Saiba mais

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Saiba mais

Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, teste, monitoramento e automação de sistemas de ML em produção. Também incluímos experiências práticas de uso da ingestão de streaming do Vertex AI Feature Store na camada do SDK.

Saiba mais

Neste curso, vamos conhecer os componentes e as práticas recomendadas para criar sistemas de ML com alto desempenho em ambientes de produção. Vamos abordar algumas considerações comuns relacionadas à criação desses sistemas, como treinamento estático e dinâmico, inferência estática e dinâmica, TensorFlow distribuído e TPUs. O objetivo deste curso é conhecer as características de um sistema de ML eficiente, que vão muito além da capacidade de fazer boas previsões.

Saiba mais

Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, no teste, no monitoramento e na automação de sistemas de ML em produção. Profissionais de engenharia de machine learning usam ferramentas para fazer melhorias contínuas e avaliações de modelos implantados. São profissionais que trabalham com ciências de dados e desenvolvem modelos para garantir a velocidade e o rigor na implantação de modelos com melhor desempenho.

Saiba mais

Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.

Saiba mais

Este curso tem uma abordagem realista para o fluxo de trabalho de ML usando um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. Essa equipe precisa conhecer as ferramentas necessárias para a governança e o gerenciamento de dados e decidir a melhor abordagem para o processamento deles. A equipe terá três opções para criar modelos de ML em dois casos de uso. Neste curso, explicamos quando usar o AutoML, o BigQuery ML ou o treinamento personalizado para alcançar os objetivos.

Saiba mais

O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.

Saiba mais

O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.

Saiba mais

Quais são as práticas recomendadas para implementar machine learning no Google Cloud? O que é Vertex AI e como é possível usar a plataforma para criar, treinar e implantar modelos de machine learning do AutoML com rapidez e sem escrever nenhuma linha de código? O que é machine learning e que tipos de problema ele pode resolver? O Google pensa em machine learning de uma forma um pouco diferente. Para nós, o processo de ML é sobre fornecer uma plataforma unificada para conjuntos de dados gerenciados, como uma Feature Store, uma forma de criar, treinar e implantar modelos de machine learning sem escrever nenhuma linha de código. Além disso, o ML também é sobre a habilidade de rotular dados, criar notebooks do Workbench usando frameworks (como TensorFlow, SciKit Learn, Pytorch e R) e muito mais. A plataforma Vertex AI também inclui a possibilidade de treinar modelos personalizados, criar pipelines de componente e realizar previsões em lote e on-line. Também falamos sobre as cinco fas…

Saiba mais

Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.

Saiba mais

Neste curso, apresentamos os produtos e serviços de Big Data e machine learning do Google Cloud que dão suporte ao ciclo de vida de dados para IA. Nele, você verá os processos, desafios e benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.

Saiba mais