가입 로그인

Google Cloud 콘솔에서 기술 적용

Kevin Joy DSouza

회원 가입일: 2021

실버 리그

11619포인트
Deploy Multi-Agent Systems with Agent Development Kit (ADK) and Agent Engine Earned 7월 9, 2025 EDT
Agentspace로 더 신속하게 지식 교환하기 Earned 6월 25, 2025 EDT
생성형 AI 에이전트: 조직 혁신 Earned 5월 22, 2025 EDT
생성형 AI 앱: 업무 혁신 Earned 5월 20, 2025 EDT
생성형 AI: 환경 살펴보기 Earned 5월 16, 2025 EDT
생성형 AI: 기본 개념 이해 Earned 5월 16, 2025 EDT
생성형 AI: 챗봇 그 이상의 가치 Earned 5월 14, 2025 EDT
Implementing Generative AI with Vertex AI Earned 4월 30, 2025 EDT
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 4월 8, 2025 EDT
Vertex AI Studio 소개 Earned 6월 26, 2023 EDT
이미지 캡셔닝 모델 만들기 Earned 6월 24, 2023 EDT
Generative AI Fundamentals - 한국어 Earned 6월 22, 2023 EDT
인코더-디코더 아키텍처 Earned 6월 13, 2023 EDT
이미지 생성 소개 Earned 6월 5, 2023 EDT
책임감 있는 AI 소개 Earned 6월 5, 2023 EDT
Transformer 모델 및 BERT 모델 Earned 6월 5, 2023 EDT
어텐션 메커니즘 Earned 6월 2, 2023 EDT
대규모 언어 모델 소개 Earned 6월 2, 2023 EDT
생성형 AI 소개 Earned 6월 2, 2023 EDT

In this course, you’ll learn to use the Google Agent Development Kit to build complex, multi-agent systems. You will build agents equipped with tools, and connect them with parent-child relationships and flows to define how they interact. You’ll run your agents locally and deploy them to Vertex AI Agent Engine to run as a managed agentic flow, with infrastructure decisions and resource scaling handled by Agent Engine. Please note these labs are based off a pre-released version of this product. There may be some lag on these labs as we provide maintenance updates.

자세히 알아보기

직원들이 검색창 하나로 문서 스토리지, 이메일, 채팅, 티켓 시스템, 기타 데이터 소스에서 특정 정보를 찾을 수 있도록 설계된 엔터프라이즈 도구인 Agentspace에는 Google의 전문적인 검색 및 AI 기술이 통합되어 있습니다. 또한 Agentspace 어시스턴트를 사용하면 브레인스토밍 및 조사는 물론 문서 개요를 작성하고 캘린더 일정에 동료를 초대하는 등의 작업에 도움이 되므로 직원들이 지식 관련 작업과 모든 종류의 협업을 빠르게 진행할 수 있습니다.

자세히 알아보기

'생성형 AI 에이전트: 조직 혁신'은 생성형 AI 리더 학습 과정의 다섯 번째이자 마지막 과정입니다. 이 과정에서는 조직이 커스텀 생성형 AI 에이전트를 사용하여 어떻게 특정 비즈니스 과제를 해결할 수 있는지 살펴봅니다. 모델, 추론 루프, 도구와 같은 에이전트의 구성요소를 살펴보며 기본적인 생성형 AI 에이전트를 빌드하는 실무형 실습을 진행합니다.

자세히 알아보기

'생성형 AI 앱: 업무 혁신'은 생성형 AI 리더 학습 과정의 네 번째 과정입니다. 이 과정에서는 Workspace를 위한 Gemini, NotebookLM 등 Google의 생성형 AI 애플리케이션을 소개합니다. 그라운딩, 검색 증강 생성, 효과적인 프롬프트 작성, 자동화된 워크플로 구축 등의 개념을 안내합니다.

자세히 알아보기

'생성형 AI: 환경 살펴보기'는 생성형 AI 리더 학습 과정의 세 번째 과정입니다. 생성형 AI는 업무 방식을 비롯해 주변 세계와 상호작용하는 방식에 변화를 일으키고 있습니다. 리더로서 생성형 AI를 활용하여 실질적인 비즈니스 성과를 얻으려면 어떻게 해야 할까요? 이 과정에서는 생성형 AI 솔루션 빌드의 다양한 계층, Google Cloud 제품, 솔루션을 선택할 때 고려해야 할 요소를 살펴봅니다.

자세히 알아보기

'생성형 AI: 기본 개념 이해'는 생성형 AI 리더 학습 과정의 두 번째 과정입니다. 이 과정에서는 생성형 AI의 기본 개념을 이해하기 위해 AI, ML, 생성형 AI의 차이점을 살펴보고 다양한 데이터 유형에서 생성형 AI로 어떻게 비즈니스 과제를 해결할 수 있는지 알아봅니다. 파운데이션 모델의 제한사항과 책임감 있고 안전한 AI 개발 및 배포의 주요 과제를 해결할 수 있도록 Google Cloud 전략에 관한 인사이트도 제공합니다.

자세히 알아보기

'생성형 AI: 챗봇 그 이상의 가치'는 생성형 AI 리더 학습 과정의 첫 번째 과정이며 요구되는 기본 요건이 없습니다. 이 과정은 챗봇에 대한 기본적인 이해를 넘어 조직을 위한 생성형 AI의 진정한 잠재력을 살펴보는 것을 목표로 합니다. 생성형 AI의 강력한 기능을 활용하는 데 중요한 파운데이션 모델 및 프롬프트 엔지니어링과 같은 개념을 살펴봅니다. 또한 조직을 위한 성공적인 생성형 AI 전략을 개발할 때 고려해야 할 중요한 사항도 안내합니다.

자세히 알아보기

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.

자세히 알아보기

이 과정에서는 딥 러닝을 사용해 이미지 캡션 모델을 만드는 방법을 알아봅니다. 인코더 및 디코더와 모델 학습 및 평가 방법 등 이미지 캡션 모델의 다양한 구성요소에 대해 알아봅니다. 이 과정을 마치면 자체 이미지 캡션 모델을 만들고 이를 사용해 이미지의 설명을 생성할 수 있게 됩니다.

자세히 알아보기

Introduction to Generative AI, Introduction to Large Language Models, Introduction to Responsible AI 과정을 완료하고 기술 배지를 획득하세요. 최종 퀴즈를 풀어보고 생성형 AI의 기본 개념을 제대로 이해했는지 확인해 보세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 지식을 숙지한 사람에게 Google Cloud에서 발급하는 디지털 배지입니다. 프로필을 공개하고 기술 배지를 소셜 미디어 프로필에 추가하여 공유하세요.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기