Agentes de IA generativa: transforme sua organização é o quinto e último curso do programa de aprendizado de liderança em IA generativa. Nele, você aprende como as organizações podem usar agentes de IA generativa personalizados para enfrentar desafios específicos nos negócios. Você aprende na prática a construir um agente básico de IA generativa e quais são os componentes desses agentes, como modelos, ciclos de raciocínio e ferramentas.
Apps de IA generativa: transforme seu trabalho é o quarto curso do programa de aprendizado de liderança em IA Generativa. Esse curso apresenta os aplicativos de IA generativa do Google, como Gemini para Workspace e NotebookLM. Além disso, aborda conceitos como embasamento, geração aumentada de recuperação, construção de comandos eficazes e criação de fluxos de trabalho automatizados.
IA generativa: encare o cenário atual é o terceiro curso do programa de aprendizado de liderança em IA generativa. A IA generativa está mudando a forma como trabalhamos e interagimos com o mundo ao nosso redor. Mas, como líder, como aproveitar esse potencial para gerar resultados de negócios reais? Neste curso, você vai conhecer as diferentes camadas da criação de soluções de IA generativa, as ofertas do Google Cloud e os fatores a serem considerados ao selecionar uma solução.
IA generativa: conceitos básicos é o segundo curso do programa de aprendizado de liderança em IA generativa. Neste curso, você conhece os conceitos básicos da IA generativa, analisa as diferenças entre IA, ML e IA generativa, e aprende como vários tipos de dados possibilitam que a IA generativa lide com desafios de negócios. Além disso, aprende sobre as estratégias do Google Cloud para lidar com as limitações dos modelos de fundação e os principais desafios para o desenvolvimento e a implantação seguros e responsáveis da IA.
IA generativa: para além do chatbot é o primeiro curso do programa de aprendizado de liderança em IA generativa e não tem pré-requisitos. Este curso tem como objetivo ir além do conhecimento básico de chatbots para explorar o verdadeiro potencial da IA generativa para sua organização. Você aprenderá conceitos como modelos de fundação e engenharia de comando, que são cruciais para aproveitar o poder da IA generativa. O curso também aborda considerações importantes ao desenvolver uma estratégia de IA generativa de sucesso para a organização.
Este curso demonstra como usar modelos de ML/IA para tarefas generativas no BigQuery. Nele, você vai conhecer o fluxo de trabalho para solucionar um problema comercial com modelos do Gemini utilizando um caso de uso prático que envolve gestão de relacionamento com o cliente. Para facilitar a compreensão, o curso também proporciona instruções detalhadas de soluções de programação que usam consultas SQL e notebooks Python.
Neste curso, vamos conhecer o Gemini no BigQuery, um pacote de recursos com tecnologia de IA que auxilia no fluxo de trabalho de dados para inteligência artificial. Esses recursos incluem preparação e análise detalhada de dados, solução de problemas e geração de código, além da descoberta e visualização do fluxo de trabalho. Com explicações conceituais, um caso de uso prático e o laboratório, o curso ensina aos profissionais de dados como aumentar a produtividade e acelerar o pipeline de desenvolvimento.
Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.
Este curso ajuda a criar um plano de estudo para o exame de certificação Professional Machine Learning Engineer (PMLE). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudo individuais.
Este é o último dos cinco cursos do Certificado Google Cloud Data Analytics. Neste curso, você vai combinar e aplicar o conhecimento e as habilidades básicas dos cursos anteriores em um projeto final focado em todo o ciclo de vida dos dados. Você também vai praticar o uso de ferramentas baseadas na nuvem para adquirir, armazenar, processar, analisar, visualizar e comunicar insights de dados de maneira eficaz. No final do curso, você terá concluído um projeto demonstrando sua proficiência em estruturar dados de várias fontes de maneira eficiente, oferecer soluções para outras partes interessadas e visualizar insights de dados usando um software com base na nuvem. Você também vai atualizar seu currículo e praticar técnicas que ajudam a preparar você para se candidatar e passar por entrevistas de emprego.
Este é o quarto de cinco cursos para o Certificado Google Cloud Data Analytics. Neste curso, você vai desenvolver habilidades nos cinco estágios principais da visualização de dados na nuvem: narrativa, planejamento, análise de dados, criação de visualizações e compartilhamento dos dados com outras pessoas. Você também vai adquirir experiência em atividades de UI/UX para criar visualizações impactantes e nativas da nuvem, além de trabalhar com ferramentas de visualização de dados para analisar conjuntos de dados, elaborar relatórios e criar painéis que auxiliam nas decisões e promovem a colaboração.
Este é o terceiro de cinco cursos para o Certificado Google Cloud Data Analytics. Nele, você vai começar com uma visão geral da jornada dos dados, desde a coleta até os insights. Você vai aprender a usar o SQL para converter dados brutos para um formato usável. Depois vai saber como transformar grandes volumes de dados com um pipeline de dados. Por último, você vai ganhar experiência aplicando estratégias de transformação em conjuntos de dados reais para atender necessidades comerciais.
Este é o segundo dos cinco cursos do Certificado Google Cloud Data Analytics. O assunto deste curso é a estruturação e a organização dos dados. Você vai adquirir experiência prática com a arquitetura de data lakehouse e os componentes de nuvem como o BigQuery, o Google Cloud Storage e o DataProc, usados para armazenar, analisar e processar grandes conjuntos de dados.
Este é o primeiro dos cinco cursos do Certificado Google Cloud Data Analytics. Neste curso, vamos definir o campo da análise de dados em nuvem e descrever as funções e responsabilidades de um analista de dados em nuvem relacionadas à aquisição, visualização de dados, ao armazenamento e processamento. Você vai conhecer a arquitetura das ferramentas baseadas no Google Cloud, como BigQuery e Cloud Storage, e descobrir como são usadas para estruturar, apresentar e relatar dados de maneira eficaz.