Agentes de IA generativa: transforma tu organización es el quinto y último curso de la ruta de aprendizaje de Líder de IA generativa. En este curso, se explora cómo las organizaciones pueden utilizar los agentes de IA generativa personalizados para abordar desafíos empresariales específicos. Puedes obtener experiencia práctica a través de la creación de un agente de IA básico mientras exploras los componentes de estos agentes, como los modelos, los bucles de razonamiento y las herramientas.
Apps de IA generativa : transforma tu trabajo es el cuarto curso de la ruta de aprendizaje de Líder de IA generativa. En este curso, se presentan las aplicaciones de IA generativa de Google, como Gemini para Workspace y NotebookLM. Te brinda orientación sobre los conceptos como la fundamentación, la generación mejorada por recuperación, la creación de instrucciones eficaces y el desarrollo de flujos de trabajo automatizados.
IA generativa: explora el panorama es el tercer curso de la ruta de aprendizaje de Líder de IA generativa. La IA generativa está cambiando la manera en la que interactuamos y trabajamos con el mundo que nos rodea. Pero, como líder, ¿cómo puedes aprovechar su poder para generar resultados comerciales reales? En este curso, explorarás las diferentes capas del desarrollo de soluciones de IA generativa, las ofertas de Google Cloud y los factores que se deben considerar cuando se selecciona una solución.
IA generativa: descubre los conceptos fundamentales es el segundo curso de la ruta de aprendizaje de Líder de IA generativa. En este curso, descubrirás los conceptos fundamentales de la IA generativa explorando las diferencias entre esta, el AA y la IA, y comprendiendo cómo los diferentes tipos de datos permiten abordar desafíos empresariales con la IA generativa. También conocerás las estrategias de Google Cloud para abordar las limitaciones de los modelos de base y los desafíos clave para desarrollar e implementar la IA de forma responsable y segura.
IA generativa: más allá del chatbot es el primer curso de la ruta de aprendizaje de Líder de IA generativa y no tiene requisitos previos. El objetivo de este curso es profundizar los conocimientos básicos sobre chatbots para explorar el verdadero potencial de la IA generativa para tu organización. Explorarás conceptos como los modelos de base y la ingeniería de instrucciones, que son fundamentales para aprovechar el poder de la IA generativa. Este curso también te sirve como guía para las consideraciones importantes que debes tener cuando desarrollas una estrategia de IA generativa exitosa para tu organización.
En este curso, se muestra cómo usar modelos de IA/AA para tareas de IA generativa en BigQuery. A través de un caso de uso práctico relacionado con la administración de relaciones con clientes, conocerás el flujo de trabajo para solucionar un problema empresarial con modelos de Gemini. Para facilitar la comprensión, el curso también proporciona orientación paso a paso a través de soluciones de programación utilizando consultas en SQL y notebooks de Python.
En este curso, se explora Gemini en BigQuery, un conjunto de funciones potenciadas por IA que se diseñaron para asistir el flujo de trabajo de datos a IA. Estas funciones incluyen la exploración y preparación de datos, la generación de código y la solución de problemas, así como el descubrimiento y la visualización de flujos de trabajo. A través de explicaciones conceptuales, un caso de uso práctico y labs prácticos, en este curso se les enseña a los especialistas en datos a impulsar su productividad y acelerar la canalización de desarrollo.
Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.
Este curso ayuda a los participantes a crear un plan de estudios para el examen de certificación de PMLE (Professional Machine Learning Engineer). Los estudiantes conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
Este es el quinto de cinco cursos del Certificado de Google Cloud Data Analytics. En este curso, combinarás y aplicarás los conocimientos y las habilidades fundamentales que se enseñaron del curso 1 al 4 en un proyecto final práctico que se enfoca en el proyecto del ciclo de vida completo de los datos. Practicarás usando herramientas basadas en la nube para adquirir, almacenar, procesar, analizar, visualizar y comunicar estadísticas de datos de manera eficaz. Al final del curso, habrás completado un proyecto en el que demuestras tu dominio en cuanto a estructurar datos de múltiples fuentes con eficacia, presentar soluciones a una variedad de partes interesadas y visualizar estadísticas de datos usando software basado en la nube. También te prepararás actualizando tu currículum y practicando técnicas de entrevista para postularte a trabajos y asistir a entrevistas.
Este es el cuarto de cinco cursos del Certificado de Google Cloud Data Analytics. En este curso, te concentrarás en desarrollar habilidades en las cinco etapas clave de la visualización de datos en la nube: narrar, planificar, explorar datos, crear visualizaciones y compartir datos con otros. También ganarás experiencia en el uso de habilidades relacionadas con la IU o UX para crear esquemas impactantes de visualizaciones nativas de la nube y trabajar con herramientas de visualización de datos nativas de la nube. Esto con el objetivo de explorar conjuntos de datos, crear informes y construir paneles que impulsen las decisiones y fomenten la colaboración.
Este es el tercero de cinco cursos en el Certificado de Google Cloud Data Analytics. En este curso, comenzarás por obtener una descripción general del recorrido basado en datos, desde la recopilación hasta las estadísticas. Aprenderás a usar SQL para transformar datos sin procesar en un formato utilizable. Luego, descubrirás cómo transformar altos volúmenes de datos con una canalización. Finalmente, obtendrás experiencia para aplicar estrategias de transformación a conjuntos de datos reales que te permitirán solucionar las necesidades empresariales.
Este es el segundo de cinco cursos en el Certificado de Google Cloud Data Analytics. En este curso, explorarás cómo se estructuran y organizan los datos. Obtendrás experiencia práctica con la arquitectura de data lakehouse y los componentes de la nube, como BigQuery, Google Cloud Storage y Dataproc para almacenar, analizar y procesar conjuntos de datos grandes de forma eficiente.
Este es el primero de cinco cursos en el Certificado de Google Cloud Data Analytics. En este curso, aprenderás cómo se define el campo de análisis de datos en la nube y a describir los roles y responsabilidades de un analista de datos en la nube, que se relacionan con la adquisición, el almacenamiento, el procesamiento y la visualización de los datos. Explorarás la arquitectura de las herramientas basadas en Google Cloud (por ejemplo, BigQuery y Cloud Storage) y cómo se utilizan para estructurar y presentar datos, y realizar informes sobre ellos de manera eficaz.