Leonardo Vigil
成为会员时间:2020
青铜联赛
400 积分
成为会员时间:2020
Cloud Hero is played around the world, in person and online. Today, you have the opportunity to become your a cloud hero! This game is all about how GCP helps you get the most out of your data. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.
不想花費大把時間,想在幾分鐘內只靠 SQL,就建立好機器學習模型嗎?透過 BigQuery ML,資料分析師可以運用現有的 SQL 工具和技巧,建立、訓練、評估模型, 並使用模型進行預測,降低機器學習的使用門檻。在 本系列的實驗室,您會測試不同類型的模型,瞭解 優良模型應具備的條件。
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.