参加 ログイン

Google Cloud コンソールでスキルを試す

Vigil Leonardo

メンバー加入日: 2020

ブロンズリーグ

400 ポイント
Cloud Hero: Data & ML Earned 11月 4, 2020 EST
ML のための BigQuery Earned 9月 30, 2020 EDT
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned 9月 29, 2020 EDT
Scientific Data Processing Earned 9月 28, 2020 EDT
[DEPRECATED] Building Advanced Codeless Pipelines on Cloud Data Fusion Earned 9月 25, 2020 EDT

Cloud Hero is played around the world, in person and online. Today, you have the opportunity to become your a cloud hero! This game is all about how GCP helps you get the most out of your data. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

詳細

SQL だけを使用して、数時間ではなく数分で ML モデルを構築したいとお考えの場合、BigQuery ML は、データ アナリストが既存の SQL ツールやスキルを使って、ML モデルを作成、トレーニング、 評価し、そのモデルで予測を行うことを可能にして、ML をより多くの人が利用できるようにします。 この一連のラボでは、さまざまなモデルタイプを試して、 優れたモデルを作成する方法を学習します。

詳細

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

詳細

ビッグデータ、機械学習、科学的データ。完璧な組み合わせといえます。このクエストは上級レベルであり、実際の科学的データセットを使用するユースケースに BigQuery、Dataproc、Tensorflow などの GCP サービスを当てはめ、実践的な演習を行います。「科学的データ処理」では、地震データの分析や衛星画像の集約といったタスクを実践し、ビッグデータと機械学習に関するスキルの強化を図ります。これにより、多岐にわたる科学的分野でさまざまな問題に取り組むことができるようになります。

詳細

This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.

詳細